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Abstract. We prove a new sharp asymptotic with the lower order term of zeroth order on ZFq(t)(B)
for counting the semistable elliptic curves over Fq(t) by the bounded height of discriminant ∆(X).
The precise count is acquired by considering the moduli of nonsingular semistable elliptic fibrations
over P1, also known as semistable elliptic surfaces, with 12n nodal singular fibers and a distinguished
section. We establish a bijection of K-points between the moduli functor of semistable elliptic
surfaces and the stack of morphisms L1,12n

∼= Homn(P1,M1,1) whereM1,1 is the Deligne–Mumford
stack of stable elliptic curves and K is any field of characteristic 6= 2, 3. For char(K) = 0, we show
that the class of Homn(P1,P(a, b)) in the Grothendieck ring of K–stacks, where P(a, b) is a 1-

dimensional (a, b) weighted projective stack, is equal to L(a+b)n+1 − L(a+b)n−1. Consequently, we
find that the motive of the moduli L1,12n is L10n+1 − L10n−1 and the cardinality of the set of
weighted Fq–points to be #q(L1,12n) = q10n+1 − q10n−1. In the end, we formulate an analogous
heuristic on ZQ(B) for counting the semistable elliptic curves over Q by the bounded height of
discriminant ∆ through the global fields analogy.

1. Introduction

An algebraic surface X is an elliptic fibration, if it admits a proper flat morphism f : X → P1

such that a general fiber is a smooth curve of genus one. X is called an elliptic surface in other
literatures. It is natural to work with the case when there exists a distinguished section s : P1 ↪→ X
coming from the identity points on each of the elliptic fibers. We restrict our attention to semistable
elliptic fibrations where all fibers are nodal.

Our primary goal of the paper is to enumerate the Fq–points of the moduli of nonsingular
semistable elliptic surfaces with discriminant degree 12n. Points on stacks are counted with weights,
where a point with its stabilizer group G (e.g. automorphism group of a semistable elliptic surface)
contributes a weight 1

|G| . We acquire the weighted Fq–point counts by considering the moduli stack

L1,12n of stable elliptic fibrations over P1 with 12n nodal singular fibers and a distinguished section.
This is justified by showing the equivalence of K–points between the two moduli stacks where K is
any field of characteristic neither 2 nor 3 (see Proposition 11 for the precise statement and the proof).
RegardingM1,1 as the moduli stack of stable elliptic curves, we show that L1,12n ∼= Homn(P1,M1,1)

a Deligne–Mumford stack parameterizing morphisms from P1 to M1,1.

In order to acquire the weighted count of Fq–points of the moduli stack Homn(P1,M1,1), we
consider the more general case of Homn(P1,P(a, b)) (see Definition 8). We provide the explicit
stratification of Homn(P1,P(a, b)). In characteristic 0, this allows us to obtain [Homn(P1,P(a, b))],
a class in the Grothendieck ring of K–stacks with char(K) not dividing a or b, expressed as a poly-
nomial of the Lefschetz motive L := [A1]. Similarly, we can count Fq-points of Homn(P1,P(a, b))

up to weights, acquiring the weighted point count #q(Homn(P1,P(a, b))) = q(a+b)n+1 − q(a+b)n−1 .

Theorem 1 (Motive of the moduli stack Homn(P1,P(a, b))). If char(K) is 0, then the class
[Homn(P1,P(a, b))] in K0(StckK) is equivalent to

[Homn(P1,P(a, b))] = L(a+b)n+1 − L(a+b)n−1 .
1
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On the other hand, when char(Fq) does not divide a or b, then

#q(Homn(P1,P(a, b))) = q(a+b)n+1 − q(a+b)n−1 .

Then, by recognizing M1,1
∼= P(4, 6) over any field K of characteristic 6= 2, 3 , we conclude the

following on the moduli stack of nonsingular semistable elliptic surfaces:

Corollary 2 (Motive and weighted point count of the moduli stack L1,12n). If char(K) = 0, then

[L1,12n] = L10n+1 − L10n−1 .

If char(Fq) 6= 2, 3,

#q(L1,12n) = q10n+1 − q10n−1 .

This implies that the number of isomorphism classes of Fq-points of L1,12n is |L1,12n(Fq)| =
2 ·(q10n+1−q10n−1) (see Remark 19). Since a semistable elliptic surface f : X → P1

Fq is a semistable

elliptic curve over P1
Fq , we acquire the following count by bounding the height of discriminant ∆(X)

when q is not divisible by 6:

Theorem 3 (Computation of ZFq(t)(B)). The counting of semistable elliptic curves over P1
Fq by

ht(∆(X)) = q12n ≤ B satisfies the following inequality:

ZFq(t)(B) ≤ 2 · (q11 − q9)
(q10 − 1)

·
(
B

5
6 − 1

)
which is an equality when B = q12n for some n ∈ N implying that the acquired upper bound is a
sharp asymptotic with the lower order term of zeroth order (i.e. constant).

While the leading term of order O
(
B

5
6

)
was expected by the work of [BM], the sharpness of the

upper bound as well as the lower order term of zeroth order over P1
Fq is remarkable as it contrasts

the known counting of the stable elliptic curves with squarefree ∆ over Q by the work of [Baier]

where the error term has the order of O
(
B(7−

5
27

+ε)/12
)

.

Lastly, we consider the global fields analogy, which says that (global) function fields Fq(t) and
algebraic number field Q are expected to share many properties (see Section 5). Thus, we formulate
the following conjecture by passing the above sharp asymptotic through the global fields analogy:

Conjecture 4 (Heuristic on ZQ(B)). The counting ZQ(B) of semistable elliptic curves over Z
by ht(∆) ≤ B follows from the sharp asymptotic counting on ZFq(t)(B) through the global fields

analogy. Namely, ZQ(B) has the leading term of order O
(
B

5
6

)
and the lower order term of zeroth

order (i.e. constant).

Our project could be considered as an extension of the beautiful work done in [EVW] by Jordan
S. Ellenberg, Akshay Venkatesh and Craig Westerland. They proved in loc.cit. a function field
analogue of the Cohen-Lenstra heuristics on distributions of class groups by point counting the
Hurwitz spaces parametrizing branched covers of the complex projective line. As the branched
covers of the P1 are the fibrations with 0-dimensional fibers, the moduli of fibrations f : X → P1

on fibered surfaces X with 1-dimensional fibers is the next most natural case to work on. The
counting technique in our project is driven largely by the inspiring work of Benson Farb and Jesse
Wolfson [FW] which in turn was motivated by the ideas in Graeme Segal’s classical paper [Segal].
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2. Semistable elliptic fibrations over P1

In this section, we define the semistable elliptic fibrations over P1. For detailed references on
elliptic curves and surfaces, we refer the reader to [Silverman, Miranda] respectively.

Let us first define the semistable fibrations. Let X be an algebraic surface and f : X → P1 be a
fibration over the projective line with g > 0, where g is the genus of a Xt for a general geometric
point t of P1. Recall from §1 that a fibration f is equipped with a distinguished section s : P1 ↪→ X.

Definition 5. A fiber Xt is semistable, if it has the following properties:

(1) Xt is reduced,
(2) The only singularities of Xt are nodes,
(3) s(t) is in the nonsingular locus of Xt,
(4) Xt contains no (−1)-curves of X.

Xt is stable, if in addition ωXt(s(t)) is ample. The fibration f is (semi)stable, if all the geometric
fibers Xt are (semi)stable respectively.

By the semistable reduction theorem [de Jong, Theorem 8.2], one can always reduce the study
of general fibrations to the study of semistable fibrations which are much easier to handle. If X is
also nonsingular, then stable fibration can be obtained from f by contracting all (−2)-curves (see
proof of Proposition 11). The image of each (−2)-curve becomes a singular point on this surface
where each singular fiber has only one node.

In this paper, we work with nonsingular semistable elliptic fibrations where the fiber genus is 1.
The only semistable singular fibers with g(Xt) = 1 are of the type Ik as in [Kodaira, Theorem 6.2]
which are denoted as the type bk in [Néron, Proof of Theorem 1].

(1) I0 : nonsingular elliptic (generic smooth fiber),
(2) I1 : irreducible rational with one node (fishtail singular fiber),
(3) Ik≥2 : k–cycle of (−2)-curves (necklace singular fiber).

Definition 6. A nonsingular semistable elliptic surface X is a nonsingular surface equipped with a
relatively minimal, semistable elliptic fibration f : X → P1 that comes with a distinguished section
s : P1 ↪→ X such that the image of s does not intersect nodal singular points of each fiber. We
assume that X is not isotrivial, i.e. the trivial elliptic fiber bundles over P1 with no singular fibers.

Remark 7. Any semistable elliptic surface of discriminant degree 12n has the 12n nodal points

distributed over µ distinct singular fibers of types Ik1 , · · · , Iki , · · · , Ikµ with
µ∑
i=1

ki = 12n. Similarly,

any stable elliptic fibration f : X → P1 of discriminant degree 12n has the µ distinct singular fibers
of type I1 over the µ distinct points x1, · · · , xµ on X where each xi has Aki−1 type singularity such

that
µ∑
i=1

ki = 12n. Recall that when char(K) 6= 2, an Ak surface singularity is étale locally defined

by
K[x, y, z]/(x2 + y2 + zk+1) ∼= K[x, y, z]/(xy − zk+1).

By a convention, A0 means smooth. Moreover, any Ak surface singularity germ (U, 0) admits a
minimal resolution by [Hironaka] when char(K) = 0. When char(K) > 0, the minimal resolution
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exists by [Lipman] as any algebraic surface over a field (which is of finite type by definition) is
excellent by [Stacks, Tag 07QW]. The minimal resolution of Ak singularities can be explicitly
computed, which is a sequence of simple blowups

U =: U0 ← U1 ← · · · ← Uk

Additionally, the exceptional locus of the minimal resolution Uk → U0 consists of the nodal chain
of rational curves of length k.

3. Moduli stack L1,12n of stable elliptic fibrations over P1

In this section, we formulate the moduli stack L1,12n of stable elliptic fibrations over P1 as the

Deligne–Mumford stack of morphisms Homn(P1,M1,1) and establish the equivalence between the
category of semistable elliptic surfaces and that of stable elliptic fibrations over P1.

Let us first recall that a pair (E, p) is a stable elliptic curve if E is a nodal projective curve of
arithmetic genus 1 and p ∈ E is a smooth point. Then, it is well–known by [Knudsen] that M1,1

is a proper Deligne–Mumford stack of stable elliptic curves with a coarse moduli space M1,1
∼= P1

parameterizing the j–invariants of elliptic curves. Denote [∞] ∈ M1,1 to be the unique point of

M1,1 \ M1,1. Notice that M1,1 comes equipped with a universal family p : C1,1 → M1,1. We

consider the following definition for a more concrete description of M1,1 :

Definition 8. The 1-dimensional a, b ∈ N weighted projective stack is defined as a quotient stack

P(a, b) := [(A2
x,y \ 0)/Gm]

Where λ ∈ Gm acts by λ · (x, y) = (λax, λby). In this case, x and y have degrees a and b respec-
tively. A line bundle OP(a,b)(m) is defined to be a line bundle associated to the sheaf of degree m

homogeneous regular functions on A2
x,y \ 0.

When the characteristic of the field K is not equal to 2 or 3, [Hassett] shows that (M1,1)K ∼=
[(Spec K[a4, a6] − (0, 0))/Gm] = PK(4, 6) by using the Weierstrass equations, where λ · ai = λiai
for λ ∈ Gm and i = 4, 6. Thus, the ais have degree i respectively. Note that this is no longer true
if characteristic of K is 2 or 3, as the Weierstrass equations are more complicated. Now we can
describe the moduli stack of stable elliptic fibrations over P1:

Proposition 9. The moduli stack L1,12n of stable elliptic fibrations over P1 with 12n nodal singular

fibers and a distinguished section is the Deligne–Mumford stack Homn(P1,M1,1) parameterizing

morphisms f : P1 →M1,1 such that f∗OP(4,6)(1) ∼= OP1(n).

Proof. By the definition of the universal family p, any stable elliptic fibration f : Y → P1 comes from
a morphism ϕf : P1 →M1,1 and vice versa. As this correspondence also works in families, we can

formulate the moduli of stable elliptic fibrations as Hom(P1,M1,1). Observe that M1,1
∼= P(4, 6)

and its coarse map is c :M1,1 →M1,1
∼= P1, so that c can be identified with c : P(4, 6)→ P1 where

c(x, y) = [x3 : y2] ∈ P1 for any (x, y) ∈ P(4, 6) ∼= [(A2
x,y \ 0)/Gm]. Since each coordinate function

of P1 lifts to degree 12 functions on P(4, 6), we conclude that c∗OP1(1) ∼= OP(4,6)(12). This implies
that deg(c ◦ϕf ) = 12 ·degϕf where degϕf := degϕ∗fOP(4,6)(1). Note that the discriminant divisor

∆ of f can be recovered by pulling back ∞ ∈ P1 via c ◦ ϕf .

Above discussion shows that L1,12n ∼= Homn(P1,M1,1). As M1,1 is Deligne–Mumford, the Hom

stack Hom(P1,M1,1) is Deligne–Mumford by [Olsson]. And since deg f∗OP(4,6)(1) = n is an open

condition, Homn(P1,M1,1) is an open substack of Hom(P1,M1,1). �

Remark 10. Analogous proof as above shows that for any a, b ∈ N and char(K) not dividing a or b,
the stack Homn(P1,P(a, b)) parameterizing morphisms f : P1 → P(a, b) with f∗OP(a,b)(1) ∼= OP1(n)
is Deligne–Mumford as well.
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Above proposition shows that L1,12n is a well-behaving object parametrizing stable elliptic fibra-
tions with discriminant degree 12n. The proposition below signifies the importance of this stack in
regard to understanding the moduli of semistable elliptic surfaces:

Proposition 11. Fix any field K of characteristic 6= 2, 3. Then there is a canonical equivalence of
groupoids between L1,12n(K) and the groupoid of semistable elliptic surfaces over K with discrimi-
nant degree 12n.

Before we start with the proof, let’s recall the facts about the relative minimal model program
on surfaces which will be useful. Without the loss of generality, assume that char(K) > 0, as all
the results below follow analogously when char(K) = 0 (see [Fujino, §7–8]).

Suppose that we are given a pair (S,D) of a projective normal K-surface S and an effective
R-divisor D on S. Then, we have the following extension of log canonical singularities of pairs to
arbitrary characteristic:

Definition 12. [Tanaka, Definition 5.1] A pair (S,D) is log canonical (lc for short) if

(1) the log canonical divisor KS +D is R-Cartier
(2) for any proper birational morphism π : W → S and the divisor DW defined by

KW +DW = π∗(KS +D)

then DW ≤ 1, i.e. when writing DW =
∑

i aiEi as a sum of distinct irreducible divisors Ei,
ai ≤ 1 for every i.

For instance, if S is smooth and D is a reduced simple normal crossing divisor, then (S,D) is
log canonical.

Now consider the relative setting, where we have a projective K-morphism f : S → C into a
K-variety C. Assume furthermore that D is a Q-divisor and S is Q-factorial. If (S,D) is lc such
that KS + D is not f -antinef, then we obtain a f -minimal model f ′ : (S′, D′) → C by [Tanaka,
Theorem 6.5], where (S′, D′) is lc, S′ is Q-factorial, and KS′+D

′ is f ′-nef. Since there is a morphism
φ : S → S′ with φ∗(KS + D) = KS′ + D′ by loc.cit., φ∗ induces an isomorphism of sheaves from
f∗O(M(KS +D)) to f ′∗O(M(KS′ +D′)) for any M ∈ N.

Observe that KS′+D′ is f ′-semiample by the relative log abundance theorem [Tanaka, Theorem
6.9]. Hence, we obtain the f -log canonical model f ′′ : (S′′, D′′) → C as a relative proj over the
variety C where (S′′, D′′) is lc,

(1) S′′ := Proj
C

⊕
M∈N

f ′∗O(M(KS′ +D′)) ∼= Proj
C

⊕
M∈N

f∗O(M(KS +D))

and KS′′ + D′′ is f ′′-ample. Note that S′′ is the result of contracting irreducible curves that
have 0-intersection with KS′ + D′. Uniqueness of (S′′, D′′) from (S,D) follows from the above
characterization.

Now we are ready to tackle the proof of Proposition 11. References to discussions from Defini-
tion 12 to here are not explicitly specified, unless it is very important to point them out.

Proof of Proposition 11. First, we need to construct a functor F from the groupoid of semistable
elliptic surfaces of discriminant degree 12n over K to L1,12n(K). Choose any semistable elliptic
surface f : X → P1 with a distinguished section s : P1 ↪→ X such that the discriminant degree is
12n. Denote this surface as a triple (X, f, s) and its base change over the algebraic closure K of
K as (X, f, s). Since X and s(P1) are smooth, so is the pair (X, s(P1

K
)), hence lc. Observe that

(X, s(P1
K

)) is itself a f -log minimal model as the pair is lc and ωXt
(s(t)) is nef for any t ∈ P1

K
.

Then there is a f -log canonical model g : (Y , s′(P1
K

))→ P1
K

. Since f : (X, s(P1))→ P1 is the fixed

locus of the Gal(K/K)-action on f : (X, s(P1
K

)) → P1
K

, there is an induced Gal(K/K)-action on
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f∗O(M(KX + s(P1
K

))). Applying this observation to equation (1), we can denote (Y, g, s′) to be

the Gal(K/K)-fixed locus of (Y , g, s′).
To see that (Y, g, s′) is a stable elliptic fibration, observe that Y comes from contracting all

components of the geometric fibers of f having trivial intersection with the divisor KX + s(P1).
Since KX is trivial on each fiber, those components must avoid the distinguished section s. Hence,
(Y, g, s′) is a stable elliptic fibration.

Note that the stable elliptic fibration (Y, g, s′) is uniquely determined by ϕg ∈ L1,12m(K) for
some m by Proposition 9 where 12m is the discriminant degree of Y . Therefore, we need to show
that F(X, f, s) = (Y, g, s′) has the discriminant degree 12n (i.e. m = n).

To see that m = n, it amounts to finding the configuration of singular fibers of g by Remark 7.
Suppose that a fiber of f at a geometric point t ∈ P1 is of type Ik with k > 0, i.e. the fiber Xt

consists of a necklace of rational curves of length k. Then by contracting the components of Xt not
containing s(t), we obtain the fiber Yt of g. Since k−1 number of components of Xt are contracted
into a point yt ∈ Yt, Y is singular of type Ak−1 at yt by Remark 7. This implies that Yt is étale
locally cut out by an equation xy = uk near its unique singular point, where u is an étale local
parameter at t ∈ P1. Since étale locally the coordinate for the universal family p at the node of
the singular fiber at [∞] ∈ M1,1 is xy = s with s a parameter at [∞] ∈ M1,1, ϕg : P1 →M1,1 is

ramified at t ∈ P1 of order k − 1 via uk = s. Hence, m = n so that ϕg ∈ L1,12n(K). Therefore, F
is a functor sending a semistable elliptic surface (X, f, s) to its f -log canonical model ϕg.

Recall that F is an equivalence iff it is essentially surjective and fully faithful. To see that F
is essentially surjective, choose any ϕh ∈ L1,12n(K). Arguments similar to above show that the
corresponding surface (Z, h, v) only has the singularities of type Ak appearing over ramification
points of ϕh over [∞] ∈M1,1. Note that an Ak singularity of Z corresponds to a singular point of
a fiber of h, and its ramification order with respect to ϕh is k. Hence, Z has a minimal resolution
of singularities η : S → Z (see Remark 7) inducing a fibration q : S → P1 via h. For each geometric
point t ∈ P1, the fiber of q at t is of type Ik whenever Z has an Ak−1-singular point at the singular
point of the fiber Zt. Since the image of v avoids singular points of Z, it lifts to v′ : P1 → S
avoiding singular points of fibers of q. Therefore, (S, q, v′) is a semistable elliptic surface with its
log canonical model (Z, h, v) (by analogous arguments in the first paragraph of the proof). To see
that the discriminant degree of (S, q, v′) is 12n, observe that the fiber of c ◦ ϕh at c([∞]) ∈ P1

is a collection of points x1, . . . , xµ with multiplicities k1, . . . , kµ respectively. These points have
ramification orders k1 − 1, . . . , kµ − 1 respectively. Since

∑
ki = 12n is the degree of c ◦ ϕh, above

construction induces singular fibers of q exactly at xi’s with fiber type Iki ’s. Summing over the
singular points of each fiber, (S, q, v′) indeed has the discriminant degree equal to 12n. This shows
that F(S, q, v′) ∼= ϕh.

Finally, F is full, because any isomorphism H : ϕh1 → ϕh2 lifts to their minimal resolution

H̃ : (S1, q1, v
′
1) → (S2, q2, v

′
2). F is faithful as any two isomorphisms between nonsingular surfaces

(Xi, fi, si)’s for i = 1, 2 agreeing on their log canonical models agree on an open subset, hence
agreeing everywhere by separatedness of Xi’s. This proves that F is an equivalence. �

Remark 13. In fact, it is unclear whether the functor F in the proof above extends to families
over arbitrary K-scheme B. Since the relative log abundance is a conjecture for sufficiently high
dimensions, it is unknown whether the log canonical model can be taken in families.

If we instead assume that the log abundance conjecture holds, then the functor F extends, giving
a map from the moduli functor of semistable elliptic surfaces and the stack L1,12n. However, it is
still unclear whether F is essentially surjective, as a simultaneous minimal resolution of the fibers
of families over any base B may not exist (normally, a resolution of singularities create exceptional
divisors, something that is not desired for the purpose of F).
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A very important consequence of Proposition 11 is that the weighted point count of L1,12n gives
the same number as that of the moduli of semistable elliptic surfaces. Since the former has a
concrete description as a Deligne–Mumford stack, we focus on acquiring the arithmetic invariants
of L1,12n.

4. Motive/Point count of Homn(P1,P(a, b)) over finite fields

In this section, we enumerate the stack Homn(P1,P(a, b)) over finite fields Fq for q prime power
with characteristic not dividing a or b by using the Grothendieck ring of stacks and explicit point
counts. This is applied to the case M1,1

∼= P(4, 6) to obtain Corollary 2. Fix n > 0.

To perform a weighted point count on Homn(P1,P(a, b)), we use the idea of cut-and-paste by
Grothendieck:

Definition 14. [Ekedahl, §1] Fix a field K. Then the Grothendieck ring K0(StckK) of algebraic
stacks of finite type over K all of whose stabilizer group schemes are affine, is a group generated
by isomorphism classes of K-stacks [X ] of finite type, modulo relations:

• [X ] = [Z] + [X \ Z] for Z ⊂ X a closed substack,
• [E ] = [X × An] for E a vector bundle of rank n on X .

Multiplication on K0(StckK) is induced by [X ][Y] := [X ×K Y]. There is a distinguished element
L := [A1] ∈ K0(StckK), called the Lefschetz motive.

Note that all stabilizer group schemes of a stack X being affine is equivalent to the diagonal
morphism X → X ×K X being affine. Since many algebraic stacks can be written locally as a
quotient of a scheme by an algebraic group Gm, the following lemma is very useful:

Lemma 15. For any Gm-torsor X → Y of finite type algebraic stacks, we have [Y] = [X ][Gm]−1.

Proof. This follows from [Ekedahl, Proposition 1.1 iii), 1.4] and the definition of KZar
0 (StckK) in

[Ekedahl, §1]. �

Since any finite type algebraic Fq-stack X admits a smooth cover Y → X by a Fq-scheme of
finite type, the set |X (Fq)| of isomorphism classes of Fq-points is finite as |Y (Fq)| is finite as well.
Hence, we can define:

Definition 16. The weighted point count of X is defined as a sum:

#q(X ) :=
∑

x∈|X (Fq)|

1

|Stabx(Fq)|

It is easy to see that when K = Fq, the assignment [X] 7→ #q(X) gives a well-defined ring
homomorphism #q : K0(StckFq) → Q (c.f. [Ekedahl, §2]). Henceforth, for any operation on the
Grothendieck ring, there is a corresponding identity in the weighted point count. For example, in
the setup of Lemma 15, #q(Y) = #q(X )(q − 1)−1, where #q(Gm) = q − 1.

Thus, if we can express [Homn(P1,P(a, b))] as sums and products of classes of other stacks with
known weighted point counts (even if the classes themselves do not decompose into polynomials in
L), then we can deduce #q(Homn(P1,P(a, b))). Therefore, we will extensively use the Grothendieck
ring in the proof of Theorem 1, then use Proposition 11 and explicit weighted point counts when
necessary. Now we are ready to prove Theorem 1.

4.1. Proof of Theorem 1. By [CCFK, §5.2], Homn(P1,P(a, b)) is isomorphic to a stack param-
eterizing line bundles L ' ϕ∗fOP(a,b)(1) of degree n on P1 together with sections u ∈ H0(P1,L⊗a)
and v ∈ H0(P1,L⊗b) such that the global sections u, v are not simultaneously vanishing at any
points of P1. Moreover, such pairs (u, v) and (u′, v′) are equivalent when there exists λ ∈ Gm so
that u′ = λau and v′ = λbv. Consider T ⊂ H0(OP1(an))⊕H0(OP1(bn)) \ 0 a Gm-equivariant open
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subset parameterizing pairs (u, v) with no common zero, where Gm-action on the vector space is
as above. Then, Homn(P1,P(a, b)) is a smooth stack isomorphic to the quotient stack [T/Gm],
admitting T as a smooth schematic cover. In particular, if char(K) > 0 and does not divide a or b,
then Homn(P1,P(a, b)) is a tame stack by [AOV, Theorem 3.2]. By Lemma 15, it suffices to obtain
the Grothendieck class [T ] (or #q(T )), as

(2) [Homn(P1,P(a, b))] = [T ][Gm]−1

Now fix a chart A1 ↪→ P1 with x 7→ [1 : x], and call 0 = [1 : 0] and ∞ = [0 : 1]. It comes from a
homogeneous chart of P1 by [Y : X] with x := X/Y away from ∞. Then for any (u, v) ∈ T , u and
v are homogeneous polynomials in X and Y with degrees an and bn respectively. By plugging in
Y = 1, we obtain representations of u and v as polynomials in x with degrees at most an and bn
respectively. For instance, deg u < an as a polynomial in x if and only if u(X,Y ) is divisible by Y ,
i.e. u vanishes at ∞. From now on, degP means the degree of P as a polynomial in x.

Denoting deg u := k and deg v := l, then (u, v) ∈ T is whenever k = an or l = bn (so that
they do not simultaneously vanish at ∞) and u, v have no common roots. Since there are many
possible degrees for a pair (u, v) ∈ T , consider locally closed subsets Tk,l := {(u, v) ∈ T : deg u =

k, deg v = l}. Notice that Tk−1,bn ⊂ T k,bn as for any (u, v) ∈ Tk−1,bn, u(X,Y ) has a description

as Y an−k+1u′(X,Y ) which is u[1:0](X,Y ) from a pencil polynomials u[t0:t1](X,Y ) = Y an−k(t1Y −
t0X)u′(X,Y ) where u[1:t1] ∈ Tk,bn. Hence, we obtain the following stratification:

T = Tan,bn t

(
an−1⊔
k=0

Tk,bn

)
t

(
bn−1⊔
l=0

Tan,l

)
T = Tan,bn ) Tan−1,bn ) · · · ) T0,bn = T0,bn

T = Tan,bn ) Tan,bn−1 ) · · · ) Tan,0 = Tan,0

Tan−k,bn ∩ Tan,bn−l = ∅ ∀k, l > 0

Then,

(3) [T ] = [Tan,bn] +
an−1∑
k=0

[Tk,bn] +
bn−1∑
l=0

[Tan,l]

Define
Fk,l := {(u, v) ∈ Tk,l : u, v are monic} .

Then, Fk,l ↪→ Tk,l is a section of the projection morphism Tk,l → Fk,l (induced by making (u, v)
to be a monic pair), which has Gm × Gm–fibers. Hence, Tk,l is a Gm × Gm–bundle over Fk,l, so
Lemma 15 implies that

(4) [Tk,l] = [Gm]2[Fk,l]

There is an alternative description of Fk,l as below (inspired by [FW]):

Definition 17. Fix a field K with algebraic closure K. Fix k, l ≥ 0. Define Poly
(k,l)
1 to be the set

of pairs (u, v) of monic polynomials in K[z] so that:

(1) deg u = k and deg v = l.
(2) u and v have no common root in K.

Therefore, Fk,l ∼= Poly
(k,l)
1 . To finish the proof, it suffices to find descriptions of [Poly

(k,l)
1 ]

and #q(Poly
(k,l)
1 ) as polynomials of L and q respectively. Farb and Wolfson [FW] (see [FW2] for

corrections to both results and proofs) found such expression when k = l (Poly
(k,k)
1 is called Polyk,21

in loc. cit.), and we claim that [Poly
(k,l)
1 ] and #q(Poly

(k,l)
1 ) have similar descriptions, as below:
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Proposition 18. Fix d1, d2 ≥ 0. Then, if char(K) = 0

[Poly
(d1,d2)
1 ] =

{
Ld1+d2 − Ld1+d2−1, if d1, d2 > 0 ,

Ld1+d2 , if d1 = 0 or d2 = 0 .

Similarly, for a finite field Fq,

#q(Poly
(d1,d2)
1 ) =

{
qd1+d2 − qd1+d2−1, if d1, d2 > 0 ,

qd1+d2 , if d1 = 0 or d2 = 0 .

Proof. The proof for this is analogous to [FW] (see [FW2] for corrections), Theorem 1.2 (1). Here,
we only state the differences to their work.
Step 1: The space of (u, v) monic polynomials of degree d1, d2 is instead the quotient Ad1 ×
Ad2/(Sd1 × Sd2) ∼= Ad1+d2 . We have the same filtration of Ad1+d2 by R

(d1,d2)
1,k , which is the space

of (u, v) monic polynomials of degree d1, d2 respectively for which there exists a monic h ∈ K[z]
with deg(h) ≥ k and monic polynomials gi ∈ K[z] so that u = g1h and v = g2h. The rest of the
arguments follow analogously, keeping in mind that the group action is via Sd1 × Sd2 .
Step 2: Fix k ≥ 0. Consider the morphism

Ψ : A(d1−k)+(d2−k) × Ak → Ad1+d2

where Ψ(f1, f2, g) = (f1g, f2g). This restricts to a morphism

Ψ : Poly
(d1−k,d2−k)
1 × Ak → R

(d1,d2)
1,k \R(d1,d2)

1,k+1

The rest of the arguments follow analogously from [FW2].
Step 3: By combining Step 1 and 2 as in [FW] and [FW2], if char(K) = 0, we obtain

[Poly
(d1,d2)
1 ] = Ld1+d2 −

∑
k≥1

[Poly
(d1−k,d2−k)
1 ]Lk

For the induction on the class [Poly
(d1,d2)
1 ], we use lexicographic induction on the pair (d1, d2).

Since the order of d1, d2 does not matter for Grothendieck class, we assume that d1 ≥ d2. For the
base cases, consider when d2 = 0. Then the monic polynomial of degree 0 is nowhere vanishing,

so that any polynomial of degree d1 constitutes a member of Poly
(d1,0)
1 , so that Poly

(d1,0)
1

∼= Ld1 .

Since this argument is independent of the characteristic, #q(Poly
(d1,0)
1 ) = qd1 . Similarly, d1 = 0 is

taken care of. Then for d1, d2 > 0, we obtain:

[Poly
(d1,d2)
1 ] = L(d1+d2) −

∑
k≥1

[Poly
(d1−k,d2−k)
1 ]Lk

= Ld1+d2 −

(
d2−1∑
k=1

(L(d1−k)+(d2−k) − L(d1−k)+(d2−k)−1)Lk + Ld1−d2Ld2
)

= Ld1+d2 −

(
d2−1∑
k=1

(Ld1+d2−k − Ld1+d2−k−1) + Ld1
)

= Ld1+d2 − Ld1+d2−1

The same arguments with #q in lieu of [−] gives the point count

#q(Poly
(d1,d2)
1 ) = qd1+d2 − qd1+d2−1

�
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Applying the Proposition 18 to the equations (2), (3) and (4), we finally get:

[Homn(P1,P(a, b))]

= [Gm]−1[T ]

= [Gm]−1

(
[Tan,bn] +

an−1∑
k=0

[Tk,bn] +
bn−1∑
l=0

[Tan,l]

)

= [Gm]−1[Gm]2

(
[F(an,bn)] +

an−1∑
k=0

[F(k,bn)] +
bn−1∑
l=0

[F(an,l)]

)

= [Gm]

(
[Poly

(an,bn)
1 ] +

an−1∑
k=0

[Poly
(k,bn)
1 ] +

bn−1∑
l=0

[Poly
(an,l)
1 ]

)

= (L− 1)

(
(L(a+b)n − L(a+b)n−1) + Lbn +

an−1∑
k=1

(Lbn+k − Lbn+k−1)

)

+ (L− 1)

(
Lan +

bn−1∑
l=1

(Lan+l − Lan+l−1)

)
= (L− 1)(L(a+b)n − L(a+b)n−1 + Lbn + L(a+b)n−1 − Lbn + Lan + L(a+b)n−1 − Lan)

= L(a+b)n+1 − L(a+b)n−1

and similarly for #q,

#q(Homn(P1,P(a, b))) = q(a+b)n+1 − q(a+b)n−1 .
This finishes the proof of Theorem 1.

Remark 19. Fix n > 0. Since any ϕg ∈ Homn(P1,P(a, b)) is surjective, the generic stabilizer
group µgcd(a,b) of P(a, b) is the automorphism group of ϕg. Then the Definition 16 and Corollary 2
implies that the number of Fq-isomorphism classes of semistable elliptic surfaces of discriminant
degree 12n over Fq is

|L1,12n(Fq)| = 2 · (q10n+1 − q10n−1)
where the factor of 2 comes from the hyperelliptic involution.

5. Counting semistable elliptic curves over global fields by ∆

In this section, we consider ZFq(t)(B) the counting function of semistable elliptic surfaces (Defini-
tion 6) with 12n nodal singular fibers and a distinguished section. We explicitly compute ZFq(t)(B)
by the arithmetic invariant |L1,12n(Fq)| in the function field setting. An analogous object in the
number field setting is ZQ(B) which is the counting of semistable elliptic curves over Q. In the end,
we formulate a heuristic that for both of the global fields the countings ZK(B) will match with one
another.

As the generic point of P1
Fq (the base of semistable elliptic fibrations) is indeed Spec of a rational

function field of one variable t over Fq, one could think of a semistable elliptic surface X over P1 as
the choice of a model for semistable elliptic curves E over K = Fq(t) or equivalently over OK = Fq[t]
by clearing the denominators. On the number field, the analogy would be the semistable elliptic
curves E with the squarefree conductor N = p1 · · · · · · pµ over Q or equivalently over OK = Z as
relative curves over a Dedekind scheme by the minimal integral Weierstrass model of an elliptic
curve. In order to draw the analogy, we need to fix an affine chart A1

Fq ⊂ P1
Fq and its corresponding

ring of functions Fq[t], since Fq[t] could come from any affine chart of P1
Fq , whereas the ring of
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integers for the number field K is canonically determined. We denote ∞ ∈ P1
Fq to be the unique

point not in the chosen affine chart.
Note that for a maximal ideal p in OK , the residue field OK/p is finite for both of our global

fields. One could think of p as a point in Spec OK and define the height of a point p.

Definition 20. Define the height of a point p to be ht(p) := |OK/p| the cardinality of the residue
field OK/p.

For simplicity, assume that X does not have a singular fiber over∞ ∈ P1
Fq . Note that the primes

p of bad reductions are precisely points of the discriminant divisor ∆, as the fiber Xp is singular
over ∆. When K = Fq(t) the function field, we have ∆(X) ∈ H0(P1,O(12n)). It has the following
factorization for pairwise distinct maximal ideals pi ⊂ Fq[t] and α ∈ F∗q over the affine chart:

∆(X) = −16(4a34 + 27a26) = α

µ∏
i=1

pkii

There are two ways in which the bad reductions can occur: E can become nodal which is called
a multiplicative reduction at p or E can become cuspidal which is called an additive reduction at
p. For our consideration, we only have multiplicative reductions as possible bad reductions since
semistable elliptic fibrations contain only singular fibers of type Ik for k ≥ 1. Similar to Remark 7,
a given semistable elliptic fibration over the number field K has 12n nodal points distributed over

µ distinct singular fibers that are Ik1 , · · · , Iki , · · · , Ikµ with
µ∑
i=1

ki = 12n.

As the discriminant divisor ∆(X) is an invariant of the choice of semistable model f : X → P1,
we count the number of isomorphism classes of nonsingular semistable elliptic fibrations on the
function field Fq(t) by the bounded height of ∆(X):

ht(∆(X)) =

µ∏
i=1

|Fq|ki = qk1 · · · qki · · · qkµ = qk1+···+kµ = q12n

In general, the height of a discriminant ∆(X) of any X (without nonsingular fiber assumption over
∞) is defined as q12n where Deg(∆(X)) = 12n.

We now define ZFq(t)(B) and compute it by the arithmetic invariant |L1,12n(Fq)| which is equiva-
lent to the counting of the semistable elliptic surfaces over Fq by the bounded height of discriminant
∆(X).

ZFq(t)(B) := |{Semistable elliptic curves over P1
Fq with 0 < ht(∆(X)) ≤ B}|

Theorem 21 (Computation of ZFq(t)(B)). The counting of semistable elliptic curves over P1
Fq by

ht(∆(X)) = q12n ≤ B satisfies the following inequality:

ZFq(t)(B) ≤ 2 · (q11 − q9)
(q10 − 1)

·
(
B

5
6 − 1

)
which is an equality when B = q12n for some n ∈ N implying that the acquired upper bound is a
sharp asymptotic with the lower order term of zeroth order (i.e. constant).

Proof. Knowing the number of Fq-isomorphism classes of semistable elliptic surfaces of discriminant
degree 12n over Fq is |L1,12n(Fq)| = 2 · (q10n+1 − q10n−1) by Remark 19, we can explicitly compute
the bounds for ZFq(t)(B) as the following,
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ZFq(t)(B) =

⌊
logqB
12

⌋∑
n=1

|L1,12n(Fq)| =

⌊
logqB
12

⌋∑
n=1

2 · (q10n+1 − q10n−1)

= 2 · (q1 − q−1)

⌊
logqB
12

⌋∑
n=1

q10n ≤ 2 · (q1 − q−1)
(
q10 + · · ·+ q10·(

logqB
12

)
)

= 2 · (q1 − q−1)q
10(B

5
6 − 1)

(q10 − 1)
= 2 · (q11 − q9)

(q10 − 1)
· (B

5
6 − 1)

(5)

On the second line of the equations above, inequality becomes an equality if and only if n :=
logqB
12 ∈ N, i.e. B = q12n for some n ∈ N. This implies that the acquired upper bound on ZFq(t)(B)

is a sharp asymptotic of order O
(
B

5
6

)
with the lower order term of zeroth order. �

Switching to the number field realm with K = Q and OK = Z, one could choose the minimal
integral Weierstrass model of an elliptic curve with the given discriminant divisor ∆ which is already
a number.

In order to match the counting with the function field, we define the ht(∆) to be the cardinality
of ring of functions on subscheme Spec(Z/(∆)). This leads to the following analogue of ZK(B) over
Q which is ZQ(B).

ZQ(B) = |{Semistable elliptic curves E over Spec Z with 0 < ht(∆) ≤ B }|

Conjecture 22 (Heuristic on ZQ(B)). The counting ZQ(B) of semistable elliptic curves over Z
by ht(∆) ≤ B follows from the sharp asymptotic counting on ZFq(t)(B) through the global fields

analogy. Namely, ZQ(B) has the leading term of order O
(
B

5
6

)
and the lower order term of zeroth

order (i.e. constant).

The heuristic estimate of all elliptic curves over Q by the bounded height of ∆ was known to

have the order of O
(
B

5
6

)
by the work of [BM]. Moreover, the counting of stable elliptic curves with

squarefree ∆ has been done in the past over Q by the work of [Baier] where the leading term has the

order of O
(
B

5
6

)
and the error term has the order of O

(
B(7−

5
27

+ε)/12
)

. It would be interesting if

one could actually show the lower order term of ZQ for the number of semistable elliptic curves with
non-squarefree ∆ over number field Q to be of zeroth order as shown here by the sharp asymptotic
counting of ZFq(t) over (global) function fields Fq(t) when char(Fq) 6= 2, 3.
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