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Abstract

We describe a compactification of the moduli space of pairs (S, C) where S is iso-

morphic to P1 × P1 and C ⊂ S is a genus 4 curve of class (3,3). We show that the

compactified moduli space is a smooth Deligne-Mumford stack with 4 boundary compo-

nents. We relate our compactification with compactifications of the moduli space M4 of

genus 4 curves. In particular, we show that our space compactifies the blow-up of the

hyperelliptic locus in M4. We also relate our compactification to a compactification of

the Hurwitz space H3
4 of triple coverings of P1 by genus 4 curves.
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1. INTRODUCTION

Algebraic geometry originated in the study of zero sets of polynomials. An important

question in algebraic geometry is about the classification of projective varieties. It is

remarkable that certain collections of projective varieties are themselves parametrized

by points of algebraic varieties, called moduli spaces. A well-known example is the

moduli space Mg of smooth projective curves of a fixed genus g. In general, a point of

a moduli space M corresponds to an object in the classification, and a map from a space

V to M corresponds to a family of objects parametrized by V . In this way, M not only

gives ways to understand individual objects, but also naturally gives ways to understand

families of objects.

A crucial step in the study of moduli spaces is the notion of a modular compactification.

A moduli space M is a modular compactification of a moduli space M if M is compact

and contains M as a dense open subset. Since understanding compact spaces is much

easier than noncompact spaces, it is useful to have a modular compactification. Note

that moduli spaces of smooth varieties usually are not compact. To compactify them,

one can enlarge the class of smooth varieties by allowing singularities. If we carefully

select singularity conditions on varieties, then we often get a compact moduli space.

For example, enlarging the class of smooth projective curves by adding stable curves of

genus g ≥ 2, Deligne and Mumford in [11] constructed a compact moduli space Mg of

stable curves as a modular compactification of Mg . The discovery of Mg led to significant

advances not only in algebraic geometry, but also in related fields such as number theory

and mathematical physics. For instance, Harris and Mumford showed in [21] that the

moduli space Mg is of general type for g ≥ 24 by using divisors on Mg , Kontsevich used

intersection theory on Mg to give an algebraic formulation of Gromov-Witten theory

(see [16] for a survey), and Deligne and Mumford gave an algebraic proof in [11] of

the irreducibility of Mg in any positive characteristics, by using the existence of Mg .
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In contrast to the geometry of the moduli spaces of curves, the geometry of moduli

spaces of surfaces are generally unknown. Even constructing a compact moduli space

of surfaces is a recent result by Kollár, Shepherd-Barron, and Alexeev [31, 6] (see [29]

for a survey). Unlike the case of curves, we do not know the boundary members for

compact moduli spaces of surfaces. In fact, the geometry of moduli spaces of surfaces

satisfies "Murphy’s law", i.e. it can get arbitrarily bad. The broad goal of the work is to

identify and describe compact moduli spaces of surfaces which are well-behaved.

In particular, the goal of this thesis is to describe a compact moduli space X that lies

at the cusp of three different areas of study of moduli spaces in algebraic geometry,

namely (1) the study of compact moduli spaces of surfaces of log general type, (2) the

study of the birational geometry of the moduli space of curves, and (3) the study of

alternative compactifications of Hurwitz spaces parametrizing branched coverings.

The moduli space X is defined as follows. Consider a pair (S, D), where S ∼= P1 ×P1

and D ⊂ S is a smooth divisor of class (3,3). Observe that for all w > 2/3, the pair

(S, wD) is a surface of log general type. Set w = 2/3 + ε, where 0 < ε � 1. Then

X is a compactification of the space of pairs (S, wD) constructed by Kollár–Shepherd-

Barron/Alexeev [31, 6] (the idea of taking ε close to 0 is inspired by the work of Hacking

[20]). The compactification X parametrizes stable semi log canonical pairs of log general

type. We recall the definition in detail in the main text. For now, it suffices to say that it

is the analogue in higher dimensions of the Deligne–Mumford compactification Mg,n.

Having described the space X, let us explain why it is remarkable from the three

different points of views mentioned in the opening sentence. In sharp contrast to the

case of curves, it is rare to have a complete description of the boundary of the KSBA

compactification of surfaces. Furthermore, and again in contrast to the case of curves,

the KSBA compactification is usually highly singular, even reducible with components

of unexpected dimensions. Nevertheless, bucking the general expectations, we are able

to give an explicit description of all the boundary points of X. Moreover, X turns out to
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be quite well-behaved. Denote by X◦ the open substack of X that parametrizes (S, wD)

with S ∼= P1 × P1 and D ⊂ S smooth of type (3, 3). We show the following.

Theorem 1. The weighted KSBA compactification X is an irreducible and smooth Deligne–

Mumford stack over K. The closed substack X \X◦ is the union of 4 irreducible divisors.

We label the 4 boundary components Z0, Z2, Z4, and Z3,3. The log surfaces parame-

terized by their generic points are as follows.

Z0: S is a smooth quadric surface in P3 and D ⊂ S is a generic singular curve of

bi-degree (3,3).

Z2: S is an irreducible singular quadric surface in P3 and D is a complete intersec-

tion of S and a cubic surface in P3.

Z4: S is a Q-Gorenstein smoothing of the A1 singularity of P(9,1,2) and D is a

smooth hyperelliptic curve away from the singular point of type 1
9(1,2).

Z3,3: S is a union BluP(3,1,1) ∪ BlvP(3,1,1) along a P1 and D is a nodal union

of two non-Weierstrass genus 2 tails. Here, the blowups are along curvilinear

subschemes u, v of length 3 (see § 6.6 for a more precise description).

We highlight some facts about the surfaces and the curves appearing at the boundary,

referring the reader to § 6.6 for the complete list. There are only 8 isomorphism classes

of such surfaces S, 4 of which are irreducible, and among the irreducible surfaces, 1 is

non-toric. The curves D are reduced, and only have An singularities for n≤ 4.

We now come to the second facet of X, namely its relationship to the birational

geometry of Mg . Let X0 ⊂ X be the open substack that parametrizes pairs (S, wD) with

smooth D. We have a forgetful morphism

µ: X0→M4.

Denote by H ⊂M4 the closed substack that parametrizes hyperelliptic curves. We show

the following.
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Theorem 2. The forgetful map µ: X0→M4 induces an isomorphism

X0
∼= BlHM4.

Thus, X0 provides a modular interpretation of the blowup of the hyperelliptic locus

in M4. The map µ: X0→M4 does not extend to a regular map from X0 to any known

modular compactification of M4 (see Proposition 8.13 for a more precise statement). It

does, however, extend to a morphism from X to the (non-separated) moduli stack of

Gorenstein curves. It would be interesting to know if the image of X in this stack is a

modular compactification of M4 in the sense of [15], or in some other sense.

We now discuss the connection of X with the third area mentioned before, the alternate

compactifications of Hurwitz spaces. Recall that the Hurwitz space Hd
g is the moduli

space of maps φ : C → P, where C is a smooth genus g curve, P is isomorphic to P1, and

φ is a finite map of degree d with simple branching. From general structure theorems

of finite coverings, we know that the map φ gives an embedding C ⊂ PE, where E

is the so-called Tschirnhausen bundle of φ defined by E∨ = φ∗OC/OP . For a general

[φ] ∈H3
4, we have E ∼= O(3)⊕O(3), and hence PE ∼= P1 × P1. We thus get a rational

map H3
4 ¹¹Ë X defined by the rule φ 7→ (S, C), where S = PE. It is not too difficult to

see that this rational map extends to a regular map H3
4→ X.

At the heart of our analysis of X is to find a compactification of H3
4 on which the

map H3
4 → X extends to a regular, and hence surjective, map. Unfortunately, the

standard admissible cover compactification H
3

4 of H3
4 lacks this property. We appeal to

an alternate compactification H
3

4(1/6+ ε) constructed in [12]. This compactification

parametrizes weighted admissible covers φ : C → P. Roughly speaking, these are finite

maps from a reduced curve C of arithmetic genus 4 to a nodal curve P of arithmetic

genus 0 which are admissible over the nodes in the sense of Harris–Mumford [21] and

where the pointed curve (P, brφ) is (1/6+ ε)-stable in the sense of Hassett [24]. The

following theorem is the major step towards understanding X.
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Theorem 3. The map H3
4→ X extends to a regular map H

3

4(1/6+ ε)→ X.

The existence of the regular map H
3

4(1/6+ ε)→ X is crucial for our analysis of X,

and occupies the technical heart of the paper. Thanks to this map, we obtain an explicit

description of pairs parametrized by X using the knowledge of the points of H
3

4(1/6+ε).

This description allows us to understand the connection between X0 and M4, leading to

Theorem 2. It also allows us to directly verify that the Q-Gorenstein deformations of

the pairs we encounter are unobstructed, leading to Theorem 1.

In broad strokes, the proof of Theorem 3 goes as follows. General structure theorems

of triple coverings allow us to associate to a weighted admissible cover φ : C → P a pair

(S, D), where S is a P1-bundle over P and D ⊂ S is a divisor of relative degree 3 closely

related to C (the curve D differs from C only if C has non-Gorenstein singularities). It

turns out that the pair (S, wD) is always semi-stable, but not necessarily stable. That

is, it has slc singularities, but KS +wD is not necessarily ample. Nevertheless, we show

that there exists a unique stable replacement (S, D) for (S, D). That is, from (S, D) we

construct a stable pair (S, D) and show that any allowable one-parameter family with

central fiber (S, D) can be transformed into an allowable family with central fiber (S, D)

and isomorphic to the original family away from the central fiber. These transformations

involve running an appropriate minimal model program on the total space of the family.

To obtain an explicit description of (S, D), we perform an explicit sequence of blow-ups

and blow-downs. The birational geometry of threefolds involved in this process may be

of independent interest.

Having outlined the contents of the paper, we describe previous work of Hassett and

Hacking that inspired and guided us.

In [22], Hassett described the KSBA compactification of the moduli space of (S, D),

where S is isomorphic to P2 and D ⊂ S is a smooth quartic curve. In this case, the

natural map from the KSBA compactification to M3 turns out to be an isomorphism.

Observe that for a quartic curve, the embedding in P2 is the canonical embedding. The
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next case where the canonical embedding of a curve lies naturally on a surface is the

case of genus 4 curves treated in this paper.

In [20], Hacking described KSBA compactifications of weighted pairs (S, D), where

S is again isomorphic to P2 and D ⊂ S is a smooth plane curve of degree d. Hacking’s

insight was to consider weighted pairs (S, wD) that are “almost K3”, namely such that

KS + wD is positive, but very close to 0. We have followed the same approach in this

paper. The tractable description of the resulting moduli space in both Hacking’s and our

case suggests that it may be possible to generalize the picture to almost K3 log pairs for

other del Pezzo surfaces. We are currently investigating this direction.

1.1. Outline. The paper is organized as follows. Section 2 is a collection of preliminary

facts in the minimal model program which will be used subsequently in later sections.

Section 3 recalls fundamental results about the moduli of stable log surfaces. We focus

particularly on the case of almost K3 log surfaces, where it is possible to give a functorial

description of the moduli stack. Section 4 describes the construction of a log surface from

a triple covering of curves. It culminates in an explicit description of the pairs obtained

from triple coverings C → P1 where C is a genus 4 curve. Section 5 is devoted to a

construction of two kinds of threefold flips that are necessary for the stable reduction of

the surface pairs obtained in Section 4. Section 6 uses the flips of Section 5 to carry out

stable reduction for the unstable pairs. As a result, by the end of this section, we obtain

a list of the log surfaces parametrized by X. Section 7 shows that the Q-Gorenstein

deformation space of the pairs parametrized by X is smooth. Section 8 relates X to M4

and H3
4.

1.2. Conventions. All schemes and stacks are locally of finite type over an algebraically

closed field K of characteristic 0. The projectivization of a vector bundle is the space

of one dimensional quotients. We go back and forth between Weil divisors and the

associated divisorial sheaves without comment.
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2. PRELIMINARIES ON THE MINIMAL MODEL PROGRAM

In this section, we list basic facts on the minimal model program, which is a key tool

in understanding the various constructions in the paper. The minimal model program,

MMP in short, is concerned with the classification of projective varieties up to a birational

equivalence.

Unlike the case of curves, birational equivalence is a natural condition for classification

of higher dimensional varieties, due to the presence of blowup morphisms. For example,

one can always blow up a smooth point p of a projective surface S to obtain a new surface

BlpS, which is isomorphic to S away from the exceptional divisor E of the blowup. Hence,

understanding the birational equivalence class of BlpS reduces to finding exceptional

curves of BlpS that can be blown down to produce the simpler surface S. By repeating

this procedure, we obtain the minimal model of S, a surface that cannot be blown down.

Therefore, MMP for surfaces is equivalent to the classification of minimal surfaces.

In general, a normal projective variety X is minimal if the canonical divisor KX is

nef, and is canonical if KX is ample. Since the blowdowns above can be interpreted

as a contraction of a curve E in BlpS that has a negative intersection with KBlpS, the

minimal model program can be naively thought of as repeatedly finding curves to

contract in order to turn the canonical divisor into a nef divisor. This is successful for

smooth projective surfaces S, i.e. the minimal model of S can be obtained by repeated

blowdowns, and the minimal model is also a smooth projective surface.

However, in higher dimension, contracting a curve E in X with E · KX < 0 often

introduces singularities on the resulting variety. Thus, we have to understand what are

the singularity types that appear under this procedure, and how to still extend the idea

of contracting curves under such singular varieties. § 2.1 explains the singularity types

that are considered in the MMP (e.g. singularities coming from contracting KX -negative

curves). Then, we explain the actual procedure of MMP in § 2.2. This makes use of the
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singularity types discussed earlier. In § 2.3, we extend the idea of obtaining a birational

model with KX nef to KX ample.

2.1. Singularities of the MMP. Before we dive into understanding singularities of

varieties, let’s recall some conventions on divisors. A Weil divisor D on X is a formal

Z-linear combination of irreducible pure codimension 1 subvarieties of X . An effective

Weil divisor is one where all the coefficients are non-negative. If X is normal, then Weil

divisors are Cartier in codimension 1. That is, there exists an open subset U ⊂ X whose

complement is of codimension at least 2 such that the restriction of the divisor to U is

Cartier. A (generically Cartier) Weil divisor D defines a reflexive sheaf OX (D) by the

formula

OX (D) = i∗OU (D|U) ,

where U ⊂ X is an open set whose complement is of codimension at least 2 on which D

is Cartier and i : U → X is the inclusion. The divisor D is Cartier if OX (D) is invertible.

We say that D is Q-Cartier if some multiple of D is Cartier.

Now we are ready to look at the example below, which is a contraction that results in

a singular variety. Understanding divisors on this example is crucial:

Example 2.1. Consider an abelian threefold A. It comes equipped with an involution

i. This gives a quotient map π : A → A/i into the Kummer variety of A. There are

64 2-torsion points of A, which induce cyclic quotient singularities of A/i, étale locally

isomorphic to K3/i given by i(x , y, z) = (−x ,−y,−z).

Now consider f : X → Y := A/i the minimal resolution of A/i. This is simply the

blowup of the 64 singular points by [34]. There are 64 exceptional divisors Ei ’s of f ,

each of which is isomorphic to P2 with OEi
(Ei)∼= OP2(−2). Therefore, for each line class

li in Ei, KX · l = −1, implying that f is just a contraction of 64 disjoint irreducible rational

curve classes that have negative intersection with KX . This shows that a contraction of

KX -negative curves can result in a singular variety Y .
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The cyclic quotient singularity in Example 2.1 has the feature that all even multiples

of Weil divisors are Cartier. This is particularly nice, as the canonical divisor KY is always

locally a rational multiple of a Cartier divisor. This makes the intersection of curves with

KY into a well-defined operation with rational numbers as the output.

Definition 2.2. A normal variety X isQ-factorial if every Weil divisor D of X isQ-Cartier,

i.e. there is a large positive integer N such that N D is Cartier on X . X is factorial if

every Weil divisor is Cartier.

Now consider the resolution map f from Example 2.1. Since Y is Q-factorial, KY is

Q-Cartier, so that KY can be pulled back by f . It turns out that

f ∗KY = KX −
∑

i

1
2

Ei.

In fact, the coefficients of Ei being negative can be seen by noting that li · f ∗KY = 0

and li · KX < 0. This suggests that the singularities arising from contractions on smooth

varieties should be characterized by the coefficients of the exceptional divisors of the

contraction.

To expand the idea of reading off coefficients of exceptional divisors, it is natural to

generalize a normal variety Y into a pair (Y, D) of a normal variety Y (not necessarily

Q-factorial) with an effective Q-divisor D, i.e. D can be written as

D =
∑

i

ai Di

where ai ∈Q∩ (0, 1] and Di ’s are reduced irreducible divisors of Y . We replace the role

of the canonical divisor KY by the log canonical divisor KY + D. In this case, a birational

morphism f : X → Y is a log resolution of (Y, D) if X is nonsingular, supp( f ∗D) is

nonsingular, and supp( f ∗D)∪ exc( f ) only admits simple normal crossing (snc for short)

singularities. A log resolution exists by [25]. Sometimes, we instead say that the pair

(X , f −1
∗ D) is a log resolution of (Y, D) via f , where f −1

∗ D =
∑

i ai f
−1
∗ Di is the proper

9



transform of D on X and f −1
∗ Di is understood as the proper transform of Di on X . Now,

we are ready to characterize singularities of the pair (Y, D) via a log resolution f :

Definition 2.3. Suppose that (Y, D) is as above such that KY + D is Q-Cartier. Fix

a log resolution f : X → Y . Denote by f −1
∗ D the proper transform of D on X (i.e.

f −1
∗ D =

∑

i ai f
−1
∗ Di). In this case,

f ∗(KY + D) = KX + f −1
∗ D+ E, E =

∑

i

bi Ei

where each Ei is an exceptional divisor of f and ai ∈Q. Then, (Y, D) is

(1) terminal if E < 0, i.e. all bi < 0.

(2) canonical if E ≤ 0.

(3) Kawamata log terminal (klt). if each bi < 1 and ai < 1

(4) (purely) log terminal ((p)lt) if each bi < 1 (this is sometimes written as bEc ≤ 0).

(5) log canonical (lc) if each bi ≤ 1.

By [30, Corollary 2.32], the above definition is independent of the choice of log

resolution. Moreover, note that if D 6= 0, then the log resolution (X , f −1
∗ D) has canonical

singularities (which can be seen by taking further blowups on (X , f −1
∗ D) along various

centers). Note that any smooth variety X is also terminal by the definition.

Remark 2.4. In Definition 2.3, −bi is called the discrepancy of Ei with respect to (X , D).

It is written as a(Ei, X , D) in [30, §2.3]. Loc. cit. shows that each discrepancy is

independent of the choice of f (where each Ei is interpreted as a discrete valuation on

K(X ) the field of rational functions on X ).

Example 2.5. Suppose that D = 0. Then any canonical surface singularity is Gorenstein

(i.e. the canonical divisor is Cartier) and is étale locally defined by one of the following

equations on K3 (see [30, Theorem 4.20] for the proof):

• type An: x2 + y2 + zn+1 = 0,
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• type Dn: x2 + y2z + zn−1 = 0,

• type E6: x2 + y3 + z4 = 0,

• type E7: x2 + y3 + yz3 = 0,

• type E8: x2 + y3 + z5 = 0,

Example 2.6. For an isolated singularity of a variety X at a point p, the notion of klt

and lt coincide. If X has a klt singularity at p, then by [30, Corollary 5.21], it is étale

locally a quotient of a canonical singularity (Y, 0) by a cyclic finite group µr . If moreover

(Y, 0) is nonsingular, then (X , p) is called a quotient singularity. In this case, (X , p) is

Q-factorial by [30, Proposition 5.15].

When (X , p) is a quotient singularity, we tend to denote it as Kd/µr , where d is the

dimension of X and r is the order of the finite cyclic group acting on Kd . If a µr-action

is of the form ζ · (x1, . . . , xd) = (ζa1 x1, . . . ,ζad xd) where ζ is a primitive r th root of unity,

then denote 1
r (a1, . . . , ad) to be the singularity Kd/µr with this µr-action.

Consider a pair (X , D) where X is a normal variety and D is an effective divisor of X .

Then for which values of w ∈ [0, 1] is (X , wD) log canonical? By [30, Corollary 2.35], if

(X , wD) is log canonical for some w, then so is (X , w′D) for w′ < w. Thus, we want to

find the supremum of all such w. Call this number the log canonical threshold (lct) of D.

This is a useful quantity, as it encodes how singular the divisor D is when X is smooth

near D.

Example 2.7. Suppose that X ∼= K2 and D is a reduced divisor given by an equation

x a + y b = 0. Then, the lct of (X , D) is 1
a +

1
b . In particular, lct of an An curve singularity

(where D is defined by x2 + yn+1 = 0) is 1
2 +

1
n .

In the proof of Proposition 3.11, we use one more class of singularities:

Definition 2.8. Suppose that a pair (X , D) is given with D written as a sum of irreducible

divisors
∑

i ai Di such that ai ∈ [0,1]. Assume that KX + D is Q-Cartier. Then (X , D) is

divisorially log terminal iff there is a closed subset Z ⊂ X such that
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(1) X \ Z is smooth and D|X\Z is an snc divisor, and

(2) if f : Y → X is birational and E ⊂ Y is an irreducible divisor such that f (E) ⊂ Z

then aE < 1, where aE is the coefficient of E in the expression

f ∗(KX + D) = KY +
∑

F

aF F

Observe that dlt sits in between lt and lc, in the sense that lt implies dlt and dlt implies

lc, but lc does not imply dlt.

2.2. Main theorems of the MMP. With the various definitions of singularities of pairs

in § 2.1, we would like to understand which curve to contract and see what singularity

arises as a result of such contraction. To understand which curves to contract on a given

projective variety X , recall that the goal is to intersect curves with a log canonical divisor

KX + D associated to a pair (X , D). Thus, we need to understand curves on X as duals

to divisors with respect to the intersection pairing on X .

As a generalization of finding a minimal model of a variety, consider a relative setting,

where we fix a projective morphism f : X → Y between normal varieties. The naive goal

of (relative log) MMP is to turn f : X → Y into another map f ′ : X ′→ Y by a sequence

of contractions of curves on X that map to points under the map f , so that KX ′ + D′

is f ′-nef. In this case, we call X ′/Y to be the relative log minimal model of (X , D)/Y .

To carry this out, we need to find a curve E in X that maps to a point via f , with the

additional condition that it has a negative intersection with the log canonical divisor

KX + D coming from the pair (X , D). This leads to the following definition:

Definition 2.9. Suppose that f : X → Y is a projective morphism. Then, a relative

1-cycle is a R-formal linear combination C =
∑

i aiCi of irreducible, reduced and proper

curves Ci such that f (Ci) are points. Two 1-cycles C , C ′ are called numerically equivalent

if C · D = C ′ · D for all Cartier divisor D. The R-linear space of relative 1-cycles modulo

numerical equivalence is called N1(X/Y ). The numerically effective cone N E(X/Y )
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is the closure of the subset of N1(X/Y ) generated by effective relative 1-cycles (i.e.

C =
∑

aiCi with ai ≥ 0).

Note that N E(X/Y ) is a convex cone, as any weighted sum of two effective relative

1-cycles is again an effective 1-cycle.

Remark 2.10. If f is a projective morphism to a point (Y is a point), then we write X

instead of X/Y in Definition 2.9. Moreover, we omit the word "relative" in the definitions.

Recall that we are interested in obtaining morphisms that contract curves having

negative intersection with the log canonical divisor KX + D. To do so, the strategy is

to find an f -nef line bundle L that contracts a curve E having a negative intersection

with KX + D. If there is a surjection E� f∗L such that the linear series Ey → H0(L y) on

each fiber X y := f −1(y) of f has no base points, then we can construct the Y -morphism

φL : X → PE∨ that contracts L-trivial curves.

Since any line bundle is an equivalence class of Cartier divisors (of sections), L

corresponds to a hyperplane L⊥ := {C ∈ N E(X/Y ) : C · L = 0}. Defining L≥0 := {C ∈

N E(X/Y ) : C · L ≥ 0}, note that N E(X/Y ) is contained in L≥0 and N E(X/Y )∩ L⊥ is

the subcone generated by curves in X that get contracted under the map φL.

If N E(X/Y ) ∩ L⊥ is of positive dimension and (KX + D) is not f -nef, then we can

replace L (as aQ-Cartier divisor) by M+ t(KX+D) for some t ∈ R≥0 where M is an ample

Q-Cartier divisor sufficiently nearby L in N 1(X ) (defined similarly to N1(X )) to reduce

the dimension of intersection to one. This preserves f -nefness of L. When a hyperplane

(L⊥) only picks up a single ray of a convex cone, it is called an extremal ray. If this ray

happens to be generated by a class [C ′] of an irreducible projective curve C , then C is

called an extremal curve. Observe that if N E(X/Y )∩ L⊥ is an extremal ray, generated

by one class [C], then we expect φmL to be a morphism for some m� 0 such that it

only contracts curves in fibers of f that are numerically equivalent to R≥0-multiples of
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[C]. This is a desired contraction to perform, in order to make the log canonical divisor

KX + D closer towards being f -nef.

Now we have reduced study of the whole cone N E(X/Y ) into finding extremal rays

R ⊂ N E(X/Y ) such that for any C ∈ R \ 0, C · (KX + D) < 0. This leads to obtaining

the structure of N E(X/Y ). To state the theorem in this regard, we need one more

definition. Consider the subcone N E(X/Y )KX+D≥0 := N E(X/Y ) ∩ (KX + D)≥0 where

(KX + D)≥0 := {C ∈ N1(X ) : C · (KX + D)≥ 0}. When KX + D is replaced by a Q-Cartier

divisor M , define N E(X/Y )M≥0 analogously. The structure of N E(X/Y ) with respect to

KX + D is given by the Cone Theorem below, from [30, Theorem 3.25(1)(2)]:

Theorem 2.11 (Cone Theorem). Let (X , D) be a klt pair, D an effective Q-divisor, and

f : X → Y a projective morphism. Then

(1) There are countably many rational curves C j ⊂ X such that f (C j) = point, 0 <

−(KX + D) · C j ≤ 2dim X , and

N E(X/Y ) = N E(X/Y )KX+D≥0 +
∑

R≥0[C j]

(2) For any ε > 0 and f -ample divisor H,

N E(X/Y ) = N E(X/Y )KX+D+εH≥0 +
∑

finite

R≥0[C j]

This in particular implies that for each (KX + D)-negative extremal curve C j (which is

rational) with f (C j) = point, there is an f -nef line bundle L j such that N E(X/Y )∩ L⊥j =

R≥0[C j]. The corresponding rational map φL given by the (relative) complete linear

series is not necessarily basepoint free. We can draw similar conclusion for any (KX +D)-

negative extremal face, a face of N E(X/Y ) generated by a finite number of such C j ’s.

The Contraction Theorem below gives the behavior of such rational maps φL:

Theorem 2.12 (Contraction Theorem). Take the same assumptions as in Theorem 2.11.

Then,
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(1) Let F ⊂ N E(X/Y ) be a (KX + D)-negative extremal face. Then there is a unique

Y -projective morphism contF : X → Z, called the contraction of F, such that

(contF)∗OX = OZ and an irreducible curve C ⊂ X is mapped to a point by contF iff

[C] ∈ F.

(2) Let F and contF : X → Z as above. If L is a line bundle on X such that L · C = 0

for every curve [C] ∈ F, then there is a line bundle LZ on Z with L ∼= cont∗F LZ .

So far, we only intersect KX + D with curves in X with zero-dimensional image under

f . Thus, both KX + D and KX/Y + D have the exact same properties as a dual function

on N1(X/Y ). Therefore, we freely interchange between KX + D and KX/Y + D for the

(relative log) MMP, and call both the (relative) log canonical divisor.

In the case of a nonsingular projective threefold X with a map f to a point, Mori

in [35, Theorem 3.3 and Corollary 3.4] lists the structure of the contraction of a KX -

negative extremal ray R, which is summarized below in Theorem 2.13. To understand

the statement, we need the following definition: an extremal ray R= R≥0[C] ⊂ N1(X )

is numerically effective if C ·M ≥ 0 for any effective divisor D.

Theorem 2.13. Let X be a nonsingular projective threefold. If a KX -negative extremal ray

R is not numerically effective, then contF : X → Z is birational and the exceptional locus

exc(contR) is an irreducible divisor E with dim(contR(E))≤ 1. There are five cases on the

structure of contF near E:

(1) contR(E) is a nonsingular curve and Z is nonsingular. contF |E : E→ contR(E) is a

P1-bundle.

(2) q = contR(E) is a point and Z is nonsingular. E ∼= P2 and OE(E)∼= OP2(−1).

(3) q = contR(E) is a point, E ∼= P1 × P1, and OE(E) ∼= OP1×P1(−1,−1). Z has a

factorial singularity at q given by

K¹x , y, z, wº/(x2 + y2 + z2 +w2)
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which is an ordinary double point 3-fold singularity.

(4) q = contR(E) is a point, E is isomorphic to a singular quadric surface Q in P3, and

OE(E)∼= OQ(−1). Z has a factorial singularity at q given by

K¹x , y, z, wº/(x2 + y2 + z2 +w3)

(5) q = contR(E) is a point, E ∼= P2, and OE(E) ∼= OP2(−2). Z has a Q-factorial

singularity at q given by

A3
x ,y,z/i, i(x , y, z) = (−x ,−y,−z)

As a generalization of the nice situation in Theorem 2.13, consider a projective

morphism f : X → Y with KX + D Q-Cartier but not f -nef, and contR : X → Z for

some extremal ray R is a birational morphism that contracts an irreducible divisor. We

call such contractions a divisorial contraction. By [30, Proposition 3.36], any divisorial

contraction on a dlt pair (X , D) preserves Q-Cartierness of log canonical divisors, i.e.

the log canonical divisor KZ + DZ := (contR)∗(KX + D) on the image (Z , DZ) is Q-Cartier.

Moreover, discrepancies on (Z , DZ) are not smaller than that on (X , D) by [30, Lemma

3.38], so that by Definition 2.3 and Remark 2.4, a divisorial contraction preserves

singularity types of pairs, possibly except for the case of lc singularity.

However, not all contractions contR are divisorial. What happens when contR is a

small contraction, i.e. birational but the codimension of exc(contR) is bigger than 1?

In this case, Q-Cartierness of the log canonical divisor is not preserved, as seen in [30,

Case 3 of 2.6]. This is particularly bad, as the singularity we obtain is much worse than

Definition 2.3. This is the case where taking a contraction is not desired. Instead, we

take a birational map called flip on (X , D) which is an isomorphism on X \ exc(contR).

We restate the definition given in [30, Definition 3.33] in the modern framework:

Definition 2.14. Given a pair (X , D) with X normal and KX + D Q-Cartier, suppose

that we have a small contraction g = contR : (X , D) → (Z , DZ) of a KX + D-negative
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extremal ray R. Then, the flip of g is a rational map h : (X , D) ¹¹Ë (X ′, D′) where D′

is the birational transform of D and KX ′ + D′ is Q-Cartier which fits into the following

commutative diagram

(X , D) (X ′, D′)

(Z , DZ )

h

g g ′

such that

(1) g ′ is proper birational with codim(exc(g ′))≥ 2, and

(2) KX ′ + D′ is g ′-ample.

Often, we will say a flip h instead of specifying the small contraction g.

Remark 2.15. Starting with a small contraction g : (X , D) → (Z , DZ) from a klt pair

(X , D), the flip of g exists by [8, Corollary 1.4.1], and is unique by [30, Corollary 6.4].

The flip corresponding to an extremal ray R is indeed analogous to a divisorial

contraction, except that the Picard rank does not drop by 1 (it stays the same). First,

Q-Cartierness of log canonical divisors is preserved under a flip. Second, a flip preserves

the singularity types by [30, Lemma 3.38]. Third, if (X , D) is a projective Q-factorial dlt

pair, then X ′ is also Q-factorial. Finally, a flip turns the KX + D-negative extremal curve

C (that generates R) into a curve C ′ ⊂ exc(g ′), and (KX ′ + D′) · C ′ > 0. Hence, we can

think of a flip as a step towards turning KX + D into a nef divisor.

Remark 2.16. In general, the flip of g is difficult to describe explicitly. Even when D = 0,

the flip of g is characterized by

g ′ : X ′ = ProjZ
∞
⊕

m=0

g∗OX (mKX )→ Z

but it seems hopeless in general to compute various pushforwards on a singular variety Z .

Instead, we adapt to an idea coming from the Weak Factorization Theorem [3, Theorem
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0.3.1], which roughly states that a birational map between proper nonsingular varieties

can be decomposed into a sequence of blowups and blowdowns. Motivated by this

idea, we construct two examples of flips explicitly in Section 5 by constructing explicit

sequences of blowups and blowdowns. Those flips will be used in Section 6.

Outcome of the MMP. Now we are ready to precisely state the goal of the (relative

log) minimal model program. Start with a klt pair (X , D) and a projective morphism

f : X → Y between normal varieties over an algebraically closed field K of characteristic

zero. The goal is to find a Y -birational model (X ′, D′) of (X , D) such that one of the

following two is true:

• Mori fiber space: contR : X ′→ B, where R is a KX ′ + D′-negative extremal ray, is

a projective morphism over B of smaller dimension than X , and the Picard rank

ρ(B) = ρ(X )− 1.

• Minimal model: KX ′ +D′ is nef over Y (so that X and X ′ are in fact Y -birational).

Mori fiber spaces are also called log Fano fibrations, because the Picard rank of each

fiber is 1 and KX + D is antiample on each fiber. P1-bundles are examples of Mori fiber

spaces. It is easy to see that there are no minimal models for such bundles. We will see

below that both minimal models and Mori fiber spaces should cover all cases of interest.

Steps of the MMP. The MMP is a recursive procedure that turns (X , D) into a birational

model, which is either a minimal model or a Mori fiber space. Fix the base B. The

following procedure is obtained by a sequence of birational maps discussed above:

Step 1: Start with a klt pair (X , D) and a projective morphism f : (X , D)→ Y .

Step 2: Is KX + D f -nef?

• If yes, (X , D)/Y is a minimal model. End.

• Otherwise, choose a (KX + D)-negative extremal ray R ⊂ N E(X/Y ) by

Theorem 2.11.
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Step 3: Consider the Y -morphism contR : (X , D)→ (Z , DZ) (exists by Theorem 2.12). Is

dim(Z) smaller than dim(X )?

• If yes, contR : (X , D)→ Z is a Mori fiber space. End.

• Otherwise, move to the next step.

Step 4: Is the codimension of exc(contR) bigger than 1?

• If yes, take a flip h : (X , D) ¹¹Ë (X ′, D′) (this can be done by Remark 2.15)

and go back to Step 1 with (X ′, D′)/Y instead of (X , D)/Y .

• Otherwise, go back to Step 1 with (Z , DZ)/Y instead of (X , D)/Y .

It is not clear from the algorithm of MMP whether it terminates or not. By the

celebrated result in [8, Theorem 1.2], usually annotated as BCHM, MMP terminates for

some choices of extremal rays when either D is f -big and KX +D is f -pseudoeffective or

KX + D is f -big. Since we will mainly use the bigness, we recall the definition of f -big

below and direct readers to [10, §1.6.3] for the definition of f -pseudoeffective:

Definition 2.17. Given a irreducible projective variety X , a Q-Cartier divisor D is big

if [D] = [A] + [N], where A is an ample Q-divisor and N is an effective Q-divisor. In

the relative setting, where f : X → Y is projective with Y an irreducible variety, then a

Q-Cartier divisor D on X is f -big if Dη is big on Xη, where η ∈ S is the generic point.

Note that bigness is a mild generalization of ampleness in N 1(X ). Moreover, f -

pseudoeffectivity of D roughly states that on some fiber of f , D is realized as a limit of

effective R-divisors in N 1(X/B). Now we are ready to consider an example where the

conditions of [8, Theorem 1.2] hold.

Example 2.18. Consider a smooth projective morphism π : X →∆ of fiber dimension

2 into a DVR ∆ with KX/∆ antiample. Call η the generic point of ∆. Suppose that we

are given a general pair (X , D) with D/S flat, reduced, and proper of fiber dimension 1

such that Dη is smooth, [D] ∈ R≥0[−KX ] ⊂ N 1(X/∆), and KX + wD is π-nef for some

w ∈ Q∩ (0,1). In this case, D is ample and KX +wD is π-pseudoeffective. In general,
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the pair (X , D) can have very nasty singularities, so we cannot use MMP directly on

(X , D)/∆.

Now consider a log resolution f : (X̃ , D̃)→ (X , D). Notice that f only modifies the

central fiber. Hence, (D̃η ,→ X̃η) ∼= (Dη ,→ Xη), so that D̃ is ( f ◦ π)-big on X̃ . Since

(KX̃ +wD̃)η = (KX + D)η is pseudoeffective, KX̃ +wD̃ remains ( f ◦π)-pseudoeffective.

Hence, the conditions of [8, Theorem 1.2] are satisfied on the log resolution.

Moreover, if KX +wD is π-ample, then KX +wD is π-big. A similar argument as above

shows that KX̃ +wD̃ remains π-big.

This allows us to use MMP on a 1-parameter family of surfaces considered in Section 3.

Remark 2.19. Note that finding a minimal model involves choosing a sequence of

extremal rays, so that a minimal model is not unique. In fact, given a klt pair (X , D),

minimal models are birational by a sequence of flops. Since we do not use flops in

subsequent sections, we do not define it in this paper. Instead, read [30, Definition

6.10] for self-interest.

2.3. The log canonical program. Suppose that given a lc pair (X , D) with KX +D f -nef

where f : X → Y is a projective morphism, we would like to find a birational model

(X , D)/Y of (X , D)/Y where KX + D is ample. This is particularly useful for studying

moduli spaces of varieties, as the ampleness of the log canonical divisor implies that the

pair (X , D)/Y has only finitely many automorphisms over Y . We call such pair (X , D)/Y

a (log) canonical model of (X , D)/Y , if X is still B-birational to X .

To obtain a canonical model from a minimal model (X , D)/Y , all we need to do is

to contract all curves C with zero-dimensional images in Y such that C · (KX + D) = 0.

If (X , D)/B is the result of such contraction (if such contraction exists), then KX + D is

ample by Kleiman’s criterion [30, Theorem 1.18] if KX + D is Q-Cartier. Since KX + D is

already nef, such contraction exists if a linear series from m(KX + D) is basepoint free
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for m sufficiently high. This is guaranteed when X is a threefold by [28, Theorem 1.1],

which we state it below:

Theorem 2.20. (log Abundance Theorem for threefolds) If X is a threefold, (X , D) is lc,

and KX + D is nef, then |m(KX + D)| is basepoint free for some m.

This implies the relative version, as above theorem has no properness assumption

on X and by restricting Y to an affine open neighborhood, the conditions of above is

met. Hence, we can obtain a log canonical model (X , D)/Y of a minimal model (X , D).

Moreover, it is easy to see that (X , D) has lc singularities. Instead of trying to find such

m to construct (X , D)/Y , [30, Theorem 3.52] gives a construction of (X , D)/Y without

finding this m:

(2.1) X =
⊕

m≥0

f∗OX (mKX + bmDc)

Loc. cit. also shows that the log canonical model is unique as well. In fact, Loc. cit.

shows that given any log canonical pair (X , D)/Y with X projective over Y (without the

assumption that KX + D is Y -nef), if a log canonical model exists, then it is unique and

is given by above. This implies that the log canonical model (X , D)/Y is independent of

the minimal model of (X , D)/Y that we find.

Henceforth, given any klt pair (X , D) where X is a threefold and is projective over Y ,

we can combine the MMP and (2.1) to obtain the (log) canonical program:

Step 1: Start with a klt pair (X , D) and a projective morphism f : (X , D)→ Y , where X

is a threefold. Assume that either D is f -big and KX + D is f -pseudoeffective or

KX + D is f -big.

Step 2: Run MMP on (X , D)/Y (by [8, Theorem 1.2]) to get a minimal model (X ′, D′)/Y .

Is KX ′ + D′ nef over B?

• If yes, (X ′, D′)/Y is a minimal model. Move to the next step
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• Otherwise, (X ′, D′)/Y is a Mori fiber space. End, as (X , D) does not admit

a log canonical model.

Step 3: Use the log-pluricanonical series coming from multiples of KX ′ + D′ to construct

log canonical contraction map (X ′, D′)→ (X ′′, D′′) (works by Theorem 2.20).

Step 4: Is the fiber dimension of X ′′ the same as X?

• If yes, (X ′′, D′′) is the log canonical model. End.

• Otherwise, dim X ′′ < dim X , and (X , D)/Y does not admit the log canonical

model. End.
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3. MODULI SPACES OF ‘ALMOST K3’ STABLE LOG SURFACES

In this section, we collect fundamental results on moduli of stable log surfaces of

a particular kind that are used throughout this paper. These log surfaces consist of a

rational surface and a divisor whose class is proportional to the canonical class, and

which is taken with a weight such that the log canonical divisor is just barely ample

(hence the name ‘almost K3’). Hacking pioneered the study of such surfaces in [19] and

[20], hence those surfaces are called Hacking stable in other places in the literature

[18, 14]. Our treatment closely follows his work and benefits greatly from the subsequent

enhancements due to Abramovich and Hassett [2].

All objects are over an algebraically closed field K of characteristic 0. We fix a pair of

relatively prime positive integers (m, n) with m≤ n. After the general foundations in

§ 3.1–§ 3.4, we take (m, n) = (2, 3).

3.1. Stable log surfaces. The following definition is motivated by [20], where a similar

object in the context of plane curves is called a stable pair.

Definition 3.1 (Stable log surface). An almost K3 semi-stable log surface over K is a pair

(S, D) where S is a projective, reduced, connected, Cohen-Macaulay surface over K and

D is an effective Weil divisor on S such that

(1) no component of D is contained in the singular locus of S;

(2) the pair (S, m/n · D) is semi log canonical;

(3) the divisor class nKS +mD is linearly equivalent to zero;

(4) we have χ(OS) = 1.

An almost K3 stable log surface is an almost K3 semi-stable log surface (S, D) such that

for some ε > 0

(1) the pair (S, (m/n+ ε) · D) is semi log canonical (slc for short);

(2) KS + (m/n+ ε) · D is ample.
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For brevity, from now on we refer to an almost K3 stable log surface simply as a stable

log surface. This is also called We also suppress the choice of (m, n), which remains fixed

throughout this section, and equal to (2, 3) after § 3.4.

Remark 3.2. If S is smooth, then S is a del Pezzo surface. The case of S ∼= P2 (and its

degenerations) was studied by Hacking in [19] and [20]. Our interest in this paper is

the case of S ∼= P1 × P1 (and its degenerations) and (m, n) = (2,3).

We recall some terms in the definition above, mainly to set the conventions. We

assume throughout that our Weil divisors are Cartier in codimension 1. That is, there

exists an open subset U ⊂ S whose complement is of codimension at least 2 such that

the restriction of the divisor to U is Cartier. In Definition 3.1, this is guaranteed by the

first requirement.

A coherent sheaf F on S is divisorial if there exists an open inclusion i : U → S with

complement of codimension at least 2 such that i∗F is invertible and

F = i∗(i
∗F),

A divisorial sheaf is isomorphic to OS(D) for some Weil divisor D on S. Indeed, if

i∗F ∼= OU(D◦), where D◦ is a Cartier divisor on U , then we may take D = D◦. Two Weil

divisors D1 and D2 are linearly equivalent if and only if the sheaves OS(D1) and OS(D2)

are isomorphic. The divisor class KS is the linear equivalence class corresponding to

the divisorial sheaf ωS. For a divisorial sheaf F and n ∈ Z, denote by F [n] the divisorial

sheaf i∗ (i∗F⊗n). This operation corresponds to multiplication by n on the associated

divisors.

The semi log canonical condition in Definition 3.1 entails the following:

(1) S has at worst normal crossings singularities in codimension 1.

(2) Let KS be the Weil divisor associated to the dualizing sheaf ωS. Then the Q-Weil

divisor KS + (m/n+ ε) · D is Q-Cartier.
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(3) Let Sν→ S be the normalization, B ⊂ Sν the pre-image of the double curve (the

divisor defined by the different ideal), and Dν ⊂ Sν the pre-image of D. Then

the pair (Sν, (m/n+ ε) · Dν + B) is lc (see Definition 2.3).

Since nKS +m · D is linearly equivalent to 0, if KS +(m/n+ ε) · D is Q-Cartier, then both

KS and D are Q-Cartier. Note that if (S, D) satisfies the conditions of Definition 3.1 for a

particular ε, then it also satisfies the definitions for all ε′ < ε.

3.2. Families of stable log surfaces. Having defined stable log surfaces, we turn to

families of them. Ideally, the passage from objects to families ought to be straightforward.

A family of stable log surfaces should be a flat morphism whose fibers are stable log

surfaces. However, this turns out to be too näive. To ensure a well-behaved moduli

space—one in which numerical invariants are locally constant—additional conditions

are needed. There are subtleties in choosing the right choice of conditions for families

of log varieties in general. For our case, however, there is a clear answer, developed in

[19], which we follow.

Let B be a K-scheme, and π: S → B a flat, Cohen-Macaulay morphism of relative

dimension 2 with geometrically reduced fibers. An effective relative Weil divisor on S is a

subscheme D ⊂ S such that there exists an open subset U ⊂ S satisfying the following

conditions:

(1) for every geometric point b→ B, the complement of Ub in Sb is of codimension

at least 2;

(2) D|U ⊂ U is Cartier (its ideal sheaf is invertible) and flat over B;

(3) D is the scheme-theoretic closure of D|U .

A relative Weil divisor is a formal difference of effective relative Weil divisors. A divisorial

sheaf is a coherent sheaf F on S such that i∗F is locally free and F = i∗i
∗F , where

i : U → S is the inclusion of an open set as above. A relative Weil divisor D gives a

divisorial sheaf OS(D), and every divisorial sheaf is of this form. Given a divisorial sheaf
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F and n ∈ Z, we have a divisorial sheaf F [n] defined as before. If the geometric fibers Sb

are slc, then ωS/B is a divisorial sheaf [19, Example 8.18].

Let A be a K-scheme with a map A→ B. Let π: S → B be as before. Let D be a

effective relative Weil divisor on S. Set SA = S ×A B. The divisorial pullback of D to A,

denoted by D(A), is the divisor given by the closure of D|U ×B A in SA. Note that D(A) may

not be equal to the subscheme D×A B of SA. The divisorial pull-back of a non-effective

relative divisor is defined by linearity. Likewise, given a divisorial sheaf F on S, its

divisorial pull-back F(A) is defined by

F(A) = iA∗i
∗
AF,

where iA : U ×B A → SA is the open inclusion pulled back from U → S. Again, the

divisorial pull-back F(A) may not be equal to the usual pullback FA = F ×B A. To compare

the two, observe that we always have a map

(3.1) FA→ F(A).

This map is an isomorphism if FA is divisorial. We say that F commutes with base change

if for every K-scheme A with a map A→ B, the map in (3.1) is an isomorphism, or

equivalently, the usual pullback FA is divisorial. To check that F commutes with base

change, it suffices to check that it commutes with the base change for the inclusions of

closed points into S [19, Lemma 8.7]. Furthermore, if F commutes with base change,

then F is flat over B [19, Lemma 8.6]. Plainly, if F is locally free, then it commutes with

base change. Furthermore, by Nakayama’s lemma, it is easy to see that if F commutes

with base change, and Fb is invertible for all b ∈ B, then F is invertible.

Following [19, Definition 2.14], we make the following definition.

Definition 3.3 (Q-Gorenstein family). Let B be a K-scheme. A Q-Gorenstein family

of log surfaces over B is a pair (π: S → B, D ⊂ S) where π is a flat Cohen–Macaulay
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morphism with geometric fibers of dimension 2 with slc singularities, and D ⊂ S is a

relative effective Weil divisor such that the following hold:

(1) ω[i]
π

commutes with base change for every i ∈ Z, and for every geometric point

b→ B, there exists an n such that ω[n]Sb
is invertible;

(2) OS(D)[i] commutes with base change for every i ∈ Z.

A Q-Gorenstein family of stable log surfaces is a family as above with π proper where

all geometric fibers are stable log surfaces.

By [19, Lemma 8.19], if OS(−D) commutes with base change, then for every A→ B,

the divisor D is flat over B and the divisorial pullback D(A) agrees with the usual pullback

DA = D ×B A. In particular, the two possible notions of the fiber of (S, D) over b ∈ B

agree.

3.3. The canonical covering stack and the index condition. The analogue of Defini-

tion 3.3 without the divisor is called a Kollár family. Explicitly, a Kollár family of surfaces

is a flat, Cohen–Macaulay morphism π: S→ B with slc fibers satisfying the following

conditions

(1) ω[i]
π

commutes with arbitrary base change for all i ∈ Z;

(2) for every geometric point b→ B, there exists an n such that ω[n]Sb
is invertible.

Let π: S→ B be a Kollár family of surfaces. The canonical covering stack of S/B is the

stack

S=

�

spec

�

⊕

n∈Z
ω[n]
π

�

�

Gm

�

,

where the Gm action is given by the grading. By construction, S → B is flat and

Gorenstein. Furthermore, by [2, Theorem 5.3.6], the natural map p : S→ S is the coarse

space map; it is an isomorphism over the locus where ωπ is invertible; and we have

p∗ω
n
S/B =ω

[n]
S/B. Furthermore, if U ⊂ S is an open subset such that ω[N]

π

�

�

U is invertible,
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then we have

S×S U ∼=
�

spec

�N−1
⊕

n=0

ω[n]
π

�

�

U

�

�

µN

�

.

Thus, S is a cyclotomic Deligne–Mumford stack in the language of [2].

The canonical covering stack provides a convenient conceptual and technical frame-

work to deal with the Kollár condition that ω[i]
π

commute with base change. It becomes

very convenient if it also takes care of the second condition in Definition 3.3. This

motivates the following discussion.

Let (S, D) be a stable log surface over K. Let S→ S be the canonical covering stack

and D ⊂ S the divisorial pullback of D, namely the divisor obtained by taking the closure

of D|U ×S S where U ⊂ S is an open subset with complement of codimension at least 2

on which D is Cartier.

Definition 3.4 (Index condition). We say that a stable log surface (S, D) satisfies the

index condition if D ⊂ S is a Cartier divisor.

The reason for the term “index condition” is as follows. Let s ∈ S be a point. The index

of S at s is the smallest positive integer N such that ω[N]S is invertible at s. Likewise, the

index of D at s is the smallest positive integer M such that OS(D)[M] is invertible at s.

The linear equivalence nKS +mD ∼ 0 implies that we have an isomorphism

ω−n
S
∼= OS(D)

[m].

The condition in Definition 3.4 holds if and only if gcd(m, M) = 1. Thus, Definition 3.4

is a condition on the index of D.

3.4. The moduli stack. Let F be the category fibered in groupoids over the category

of K-schemes whose objects over B are Q-Gorenstein families of stable log surfaces

over B such that all geometric fibers satisfy the index condition. Morphisms in F are

isomorphisms over B.
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Theorem 3.5 (Existence of the moduli stack). F is a Deligne–Mumford stack, locally of

finite type over K.

Thanks to modern technology, it is now possible to give a short proof of this theorem.

Much of the heavy lifting is done by [2] and [37]. Before we prove the theorem, we

recast F in a more amenable form.

Let G be the category fibered in groupoids over the category of K-schemes whose

objects over B are pairs (π: S→ B,D ⊂ S), where

(1) π is a flat, proper, Kollár family of surfaces,

(2) S→ S is the canonical covering stack,

(3) D ⊂ S is an effective Cartier divisor flat over B,

such that, for every geometric point b→ B, the pair (S, D) is a stable log surface, where

D is the coarse space of D.

Proposition 3.6. The categories G and F are equivalent as fibered categories over the

category of K-schemes.

Proof. We have a natural transformation G→ F, defined as follows. Consider an object

(π: S→ B,D ⊂ S) of G over B. Let D be the coarse space of D. Using that D is a Cartier

divisor and that S→ S, we can check that OS(D)[n] commutes with base change for all

n ∈ Z (see [2, Theorem 5.3.6]). Therefore, (π: S→ B, D ⊂ S) is an object of F over B.

We now show that the transformation G→ F defined above is an isomorphism. To

do so, let us construct an inverse. Let (π: S → B, D ⊂ S) be an object of F over B.

Let S→ S be the canonical covering stack, and D ⊂ S the divisorial pullback. Since

D ⊂ S is a Q-Cartier divisor, so is D ⊂ S. Furthermore, by the index condition, for every

geometric point b→ B, the divisor D(b) is Cartier. By [19, Lemma 8.25], it follows that

D is Cartier. Thus, (π: S → B,D ⊂ S) is an object of G over B. This transformation

provides the required inverse. �
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Remark 3.7. Let (S, D) be a stable log surface. Then −KS is ample, so h0(KS) = h2(OS) =

0. Since χ(OS) = 1 and h0(OS) = 1, we also have h1(OS) = 0. Thus, hi(OS) = 0 for all

i > 0.

Proof of Theorem 3.5. By Proposition 3.6, we may work with G instead of F. We first

show that G is an algebraic stack, locally of finite type.

Let Orbλ be the moduli of polarized orbispaces defined in [2, Section 3] (called Staλ

in loc. cit.). We have a map G→ Orbλ given by

(S→ B,D ⊂ S) 7→ (S→ B,ω−1
S→B).

Since Orbλ is an algebraic stack locally of finite type, it suffices to show that for every

scheme B with a map φ : B→ Orbλ, the fiber product G×φ B is an algebraic stack.

Let B be a scheme with a map φ : B→ Orbλ corresponding to a family of polarized

orbispaces (π: S → B,λ). After passing to an étale cover, we may assume that the

polarization λ comes from a line bundle L on S. Let H→ B be the Hilbert stack of π.

This is the stack whose objects over a B-scheme A are substacks D ⊂ SA flat over A. By

[37, Theorem 1.1], H→ B is an algebraic space locally of finite type. We show that

G×φ B is isomorphic to a locally closed substack of H.

There exists an open substack U ⊂ H with the property that a map A→ H given by

(π: SA→ A,D ⊂ SA) factors through U if and only if

(1) D ⊂ SA is a Cartier divisor (its ideal sheaf is invertible);

(2) π is Gorenstein;

(3) we have χ(OSa
) = 1, and for every geometric point a→ A, there exists an ε > 0

such that (Sa, (m/n+ ε) · Da) is semi log canonical, where (Sa, Da) is the coarse

space of (Sa,Da).

(4) the locus of points in Sa with non-trivial automorphism groups has codimension

at least 2.
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The openness of the first condition follows by Nakayama’s lemma. See [2, Section 4

and Appendix A] for the openness of the Gorenstein and semi log canonical property.

The openness of the last property follows from semi-continuity of fiber dimensions in

the inertia stack IS→ B.

There exists a closed substack V ⊂ U with the property that a map B → U factors

through V if and only if, in addition to the conditions above, we have

(5) for every geometric point b→ B, the line bundles Lb⊗ωSb
and OSb

(Db)m⊗ωn
Sb

are trivial.

Since h0(OSb
) = 1 and hi(OSb

) = 0 for all i > 0, this condition is equivalent to saying

that the line bundles L⊗ωπ and OS(D)m ⊗ωn
π

are pull-backs of line bundles from B.

That this is a closed condition follows from [36, III.10].

It is now easy to see that G×φ B is isomorphic to V .

Since the automorphism group of a stable pair is finite [26, Theorem 11.12], the stack

G is Deligne–Mumford. �

It is not clear that F is of finite type for two reasons. Firstly, we have not put any

numerical conditions on (S, D). Secondly, and more seriously, there is no a priori lower

bound on the ε in Definition 3.1. The problem goes away if we define away these two

reasons.

Fix an ε > 0 and a positive rational number N . Denote by Fε,N the open substack of

F that parametrizes stable log surfaces that satisfy the definitions of Definition 3.1 with

the given ε and have K2
S ≤ N .

Proposition 3.8. Fε,N is an open substack of F of finite type. If it is proper, then the coarse

moduli space is projective.

Proof. Note that Fε,N is an open substack of F, and hence locally of finite type. The fact

that it is bounded (admits a surjective morphism from a scheme of finite type) follows
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from [5, § 7]. Assuming properness, the projectivity of the coarse space follows from [6,

§ 4]. �

Deferring the considerations of finite type, we turn to the valuative criteria for sepa-

ratedness and properness for F. To do so, we must understand Q-Gorenstein families of

stable log surfaces over DVRs. The following lemma gives a useful characterization of

such families.

Let∆ be the spectrum of a DVR with generic point η and special point 0. Letπ: S→∆

be a flat, Cohen–Macaulay morphism with reduced geometric fibers of dimension 2 with

slc singularities and D ⊂ S a relative effective Weil divisor.

Lemma 3.9. In the setup above, assume that Sη has canonical singularities and
�

S0, D(0)
�

satisfies the index condition. Then π: (S, D)→∆ is a Q-Gorenstein family of log surfaces

if and only if both KS/∆ and D are Q-Cartier.

Proof. See [19, Proposition 11.7]. The proof goes through verbatim. �

Proposition 3.10 (Valuative criterion of separatedness). Let (Si, Di)→ ∆ for i = 1,2

be Q-Gorenstein families of stable log surfaces satisfying the index condition. Suppose

the geometric generic fibers of Si → ∆ is isomorphic to P1 × P1 for i = 1,2. Then an

isomorphism between (Si, Di) over the generic fiber extends to an isomorphism over ∆.

Proof. The proof is analogous to the proof of [19, Theorem 2.24]. We recall the salient

points.

Possibly after a base change, there exists a common semistable log resolution (eS, eD) of

(Si, Di) for i = 1, 2 that is an isomorphism over the generic fiber. Recall that a semistable

log resolution is a projective morphism eS→ Si with the following properties:

(1) eS is non-singular;

(2) the exceptional locus of eS→ Si is a divisor;

(3) the central fiber eS0 of eS→∆ is reduced;
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(4) the sum of eS0, the proper transform of Di, and the exceptional divisors dominat-

ing T is a simple normal crossings divisor.

The isomorphism between (Si, Di) over the generic fiber implies that the proper

transforms of Di are equal for i = 1,2; call this proper transform eD. Let ε > 0 be such

that the central fibers of (Si, Di)→∆ satisfy Definition 3.1 with this ε (in fact, (Si, Di)

is klt). Then i = 1,2, the pair (Si, Di) is the K
eS + eS0 + (m/n+ ε) · eD canonical model

of (eS, eD). The uniqueness of the log canonical model implies that the isomorphism

between (Si, Di) over the generic fiber extends over ∆. �

From general principles, we get the following result that partially verifies the valuative

criterion of properness for F.

Proposition 3.11 (A partial valuative criterion of properness). Let ∆ be a DVR with

generic point η. Let (Sη, Dη)→ η be a log surface with Sη ∼= (P1 × P1)η and Dη ⊂ Sη a

smooth curve of bi-degree (2n
m , 2n

m ). Possibly after a base change, there exists a (flat, proper)

extension (S, D)→∆ of (Sη, Dη)→ η such that the central fiber (S0, D(0)) is a stable log

surface and both KS/∆ and D are Q-Cartier.

The key missing ingredient in Proposition 3.11 is the assertion that (S0, D(0)) satisfies

the index condition, and as a result (thanks to Lemma 3.9) that (S, D) → ∆ is a Q-

Gorenstein family. We do not know an a priori reason for the index condition to hold.

In the work of Hacking and the present paper, a separate analysis is needed to confirm

that it holds in cases of interest.

In subsequent sections, we develop methods to construct (S, D) that yield an explicit

description of (S0, D(0)) (see Theorem 6.1 and § 6.6) for stable log quadric surfaces (de-

fined in § 3.5). Thus, for stable log quadrics, Theorem 6.1 subsumes Proposition 3.11 and

also verifies the index condition. Nevertheless, we outline the proof of Proposition 3.11

in general, following the proofs of [20, Theorem 2.6] and [20, Theorem 2.12].
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Outline of the proof of Proposition 3.11. First, complete (Sη, Dη) to a flat family (P1 ×

P1, D) over ∆. Possibly after a base change on ∆, take a semistable log resolution

(eS, eD)→ (P1 × P1, D). Run a K
eS + (m/n)eD MMP on (eS, eD) over ∆ (see Example 2.18

for why we can run MMP), resulting in (S1, D1). Then run a KX1
MMP on (S1, D1) over

∆, resulting in (S2, D2). One can show that (S2, D2) → ∆ is a family of semistable

log surfaces extending the original family where both KS2
and D2 are Q-Cartier and

nKS2
+mD2 ∼ 0. We note one difference at this step from [20, Theorem 2.6]. Since the

Picard rank of our generic fiber may not be 1 (unlike the case in [20]), the central fiber

of (S2, D2)→∆ may not be irreducible.

Second, take a maximal crepant blowup (S3, D3)→ (S2, D2), namely a partial semistable

resolution such that the nKS3
+mD3 is the divisorial pullback of nKS2

+mD2, and hence

linearly equivalent to 0, and (S3, S3|0 + (m/n+ ε)D3) is dlt for small enough ε > 0. Let

(S, D) be the KS3
+ (m/n+ ε)D3 canonical model of (S3, D3). Then (S, D) is the required

extension. �

3.5. Stable log quadrics. Henceforth, we fix (m, n) = (2,3). Let FK2=8 be the open

and closed substack of F parametrizing stable log surfaces (S, D) with K2
S = 8. If S

is smooth, then it is a del Pezzo surface with K2
S = 8 and D is a divisor such that

3KS + 2D ∼ 0. In particular, KS is an even divisor class, and hence S is isomorphic

to P1 × P1 (a smooth quadric in P3) and D is a divisor of bi-degree (3,3) on S. Let

U ⊂ FK2=8 be the open substack that parametrizes stable log surfaces (S, D) with S and

D smooth. It is easy to see that U is a smooth and irreducible stack of finite type. Indeed,

let U ⊂ PH0(P1 × P1,O(3,3)) be the open subset of the linear series of (3,3) curves

on P1 × P1 parametrizing D ⊂ S such that D is smooth. Then U is the quotient stack
�

U/Aut(P1 × P1)
�

.

Definition 3.12 (Stable log quadric). We set X as the closure of U in FK2=8. We call the

points of X stable log quadrics.
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Equivalently, a stable log quadric overK is a pair (S, D) (satisfying the index condition)

such that there exists a DVR ∆ and a Q-Gorenstein family of stable log surfaces (in the

sense of Definition 3.3) whose geometric generic fiber is isomorphic to (P1 × P1,D),

where D ⊂ P1 × P1 is a smooth curve of bi-degree (3,3), and whose central fiber is

isomorphic to (S, D). By the end of Section 6, we obtain an explicit description of

the stable log quadrics. Using this description, we will also see that X ⊂ Fε,K2=8 for a

particular ε, and hence it is of finite type.
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4. TRIGONAL CURVES AND STABLE LOG SURFACES

The goal of this section is to describe the Tschirnhausen construction, which constructs

a semi log canonical surface pair from a degree 3 covering of curves.

Let X and Y be schemes and φ : X → Y a finite flat morphism of degree 3. Let E = Eφ

be the Tschirnhausen bundle of φ. This is the vector bundle on Y defined by the exact

sequence

(4.1) 0→ OY → φ∗OX → E∨→ 0.

We can associate to φ a Cartier divisor D(φ) ⊂ PE whose associated line bundle is

OPE(3)⊗ det E∨. If φ is Gorenstein, then D(φ) is defined as follows. The dual of the

quotient map in (4.1) is a map E→ φ∗ωX/Y , or equivalently a map φ∗E→ωX/Y . This

map yields an embedding X → PE [9]. The divisor D(φ) is the image of X under this

embedding. The construction of D(φ) extends by continuity to the case where φ is not

Gorenstein [13, § 4.1]. If p ∈ Y is a point over which φ is not Gorenstein, then D(φ)

contains the entire fiber of PE→ Y over p. The construction φ  D(φ) is compatible

with arbitrary base-change. Furthermore, it extends to the case where φ : X → Y is a

representable finite flat morphism of degree 3 between algebraic stacks.

Let Y be a reduced stacky curve, and let φ : X → Y be a representable finite flat

morphism of degree 3, étale over the generic points and the singular points of Y . Write

D(φ) = DH +π
∗Z ,

where DH is finite over Y and Z ⊂ Y is a divisor. Note that Z ⊂ Y is supported on the

non-Gorenstein locus of φ, and in particular on the smooth locus of Y . As we have

X ∼= DH over Y \Z , we see that DH is reduced. Let φH : DH → Y be the natural projection.

Proposition 4.1. We have the equality brφ = brφH + 4Z.
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Proof. It suffices to check the equality of divisors étale locally at a point y ∈ Y . Therefore,

we may assume that Y is a scheme. Choose a trivialization 〈S, T 〉 of E around y. We

can write D(φ) as the vanishing locus of a homogeneous cubic

f = aS3 + bS2T + cST 2 + dT 3,

where a, b, c, d ∈ OY,y . The discriminant divisor brφ is cut out by the function

∆( f ) = b2c2 − 4ac3 − 4b3d − 27a2d2 + 18abcd.

Let t be a uniformizer of Y at y and let tn be the highest power of t that divides a, b, c

and d. Then Z is the zero locus of tn and DH of the cubic fH = f /tn. We see that

∆( f ) =∆( fH) · t4n, and hence brφ = brφH + 4Z . �

Let P be an orbi-nodal curve and let φ : C → P be an admissible triple cover. Let S be

the coarse-space of the surface PEφ and D the coarse space of the divisor D(φ) ⊂ PE.

Proposition 4.2. Suppose multp brφ ≤ 5 for all p ∈ P. Then the pair (S, cD) is slc for all

c ≤ 7/10.

Proof. Locally, the pair (S, D) is obtained from the pair (PE, D(φ)) by taking the quotient

by a finite group. Since the property of being slc is preserved under finite group quotients,

it suffices to show that (PE, cD(φ)) is slc.

We first check the slc condition at the singular points of PE. Since PE → P is a

P1 bundle, the singular locus of PE is the pre-image of the singular locus of P. Let

s ∈ D(φ) ⊂ PE lie over a node p ∈ P. Since C → P is étale over p, étale locally near s

the pair (PE, D(φ)) has the form

(4.2) (specK[x , y, t]/(x y), t = 0).

We see that (PE, D(φ)) is slc at p.
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We now check the slc condition at the smooth points of PE. Let s ∈ D(φ) ⊂ PE lie over

a smooth point p ∈ P. Choose a local coordinate t on P at p and coordinates (y, t) on

PE at s. Recall that we have the decomposition D(φ) = DH +π∗Z . Since multp brφ ≤ 5,

Proposition 4.1 implies that multp Z ≤ 1.

First, suppose multp Z = 1. Then multp brφH ≤ 1; that is, DH is smooth at s and

DH → P has at most a simple ramification point at s. In other words, D has the local

equation t y = 0, which has log canonical threshold 1, or t(y2 − t) = 0, which has log

canonical threshold 3/4; both 1 and 3/4 are bigger than 7/10.

Next, suppose multp Z = 0. Then D = D(φ) is flat over p. Let Dν → D be the

normalization and δ = length(ODν/OD) the delta invariant. It is easy to check ([12,

Remark 7.4]) that

multp br(D→ P) =multp br(Dν→ P) + 2δ.

Since multp br(D→ P) ≤ 5, we get δ ≤ 2. Hence the only possible singularities of D

are the An singularities for n ≤ 4. We conclude that the log canonical threshold of D

is at most 7/10, achieved for an A4 singularity, namely for a D whose equation over P

locally over p is (y2 − x5)(y − 1) = 0. �

Remark 4.3. We record the observation from the proof of Proposition 4.2 that the only

possible singularities of D are An for n≤ 4.

Remark 4.4. We also record that (S, D) satisfies the index condition. To see this, it

suffices to check the singular points of S contained in C . If p ∈ S is a singular point

contained in C , then p is the image of (0, 0, 0) coming from the étale local neighborhood

in (4.2). In particular, S has an snc singularity at p, and in particular it is Gorenstein at

p.
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Let g ≥ 4. Denote by H3
g the Hurwitz space of genus g triple covers of the projective

line. More precisely, it is the moduli space whose S-points are given by

(P → S, C → S,φ : C → P),

where P → S is a conic bundle, C → S is a smooth, proper, and connected curve of

genus g, and φ is a finite flat morphism of degree 3 with simple branching. Let ε be

a positive number less than 1/30. Consider the compactification H
3

g(1/6+ ε) of H3
g

constructed in [12]. We quickly recall its definition and salient properties. The S-points

of H
3

g(1/6+ ε) are given by

(P → S, C → S,φ : C → P),

where P → S is a (balanced) orbi-nodal curve of genus 0, C → S is a flat, proper,

connected, orbi-nodal curve of genus g, andφ : C → P is a finite flat morphism satisfying

three conditions: (1) φ is étale over the nodes of P, (2) the monodromy map P \brφ→

BS3 given by φ is representable, and (3) the coarse space of P along with the divisor

brφ with the weight (1/6+ ε) is a weighted stable curve over S in the sense of Hassett

[24]. In this definition, a (balanced) orbi-nodal curve over S is a Deligne–Mumford

stack whose coarse space is a nodal curve over S, and whose stack structure around a

node is given étale locally over the coarse space by

[specOS[x , y]/(x y − s)/µn] ,

for some s ∈ OS, where the cyclic group µn acts by ζ: (x , y) 7→ (ζx ,ζ−1 y) (see [1,

2.1.2]). The main results of [12] imply that H
3

g(1/6 + ε) is a proper and smooth

Deligne–Mumford stack over K [12, Theorem 5.5, Corollary 6.6].

Consider a point [φ : C → P] of H
3

g(1/6+ ε). Let (S, D) be the pair associated to

C → P by the Tschirnhausen construction. We call (S, D) the Tschirnhausen pair of φ.
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Proposition 4.5. The divisor KS+(2/3+ε)D is ample for all sufficiently small and positive

ε except in the following cases.

(1) P = P1, and C is a Maroni special curve of genus 4,

(2) P = P1, and C = P1 ∪ H, where H is a hyperelliptic curve of genus 4 attached

nodally to P1 at one point.

(3) There is a component L ∼= P1 of P meeting P \ L in a unique point such that C×P L

is either

(a) a connected curve of arithmetic genus 1, or

(b) a disjoint union of L and a connected curve of arithmetic genus 2.

Recall that a smooth curve C of genus 4 is Maroni special if it satisfies the following

equivalent conditions: (a) C is not hyperelliptic and lies on a singular quadric in its

canonical embedding in P3, (b) C has a unique g1
3 , (c) there is a degree 3 map φ : C →

P1 such that the Tschirnhausen bundle (φ∗OC/OP1)∨ is isomorphic to O(2) ⊕ O(4).

In contrast, a Maroni general C of genus 4 (a) is non-hyperelliptic and lies on on a

smooth quadric in its canonical embedding in P3, (b) has two distinct g1
3 ’s, and (c) has

Tschirnhausen bundle isomorphic to O(3)⊕O(3).

Proof of Proposition 4.5. The numerical criteria of ampleness may be checked on the

stack, rather than the coarse space. Therefore, in the rest of the proof, let S denote the

stack PEφ and D(φ) ⊂ S the Tschirnhausen divisor associated to φ. As the coarse space

map of PEφ is unramified in codimension one, the divisor classes remain unchanged.

It suffices to check ampleness on each irreducible component of S. Let L be an

irreducible component of P. Set CL = L ×P C , let φL : CL → L be the restriction of φ,

and let EL be the Tschirnhausen bundle of φL. Set SL = PEL and DL = D ∩ SL. Let

n= deg EL, so that 2n= deg brφL.

We know that the Neron-Severi group of SL is spanned by the class F of a fiber and

the class ζ of OPE(1). The intersection form is determined by F2 = 0, ζF = 1, and
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ζ2 = n. The cone of curves on SL is spanned by F and the class of a section σ. Let m be

the number of points in L ∩ (P \ L) counted without any multiplicity. Then, it is easy to

check that

deg KP |L = −2+m.

Therefore, we obtain that

KS|SL
∼ (m+ n− 2)F − 2ζ.

We also have

DL ∼ 3ζ− nF.

Therefore, we get

KS + (2/3+ ε)D
�

�

SL
∼ (m+ n/3− 2)F + ε(3ζ− nF).

We see immediately that (KS + (2/3+ ε)D) · F = 3ε > 0. Thus, it remains to check

that (KS + (2/3+ ε)D) ·σ > 0 for the extremal section σ.

If m+ n/3> 2, then it is clear that (KS + (2/3+ ε)D) ·σ > 0 for small enough ε. As

a result, we only need to consider the cases where m≤ 2. In fact, the case m = 2 is also

easy to dispose off. If m = 2, then the ampleness of KP + (1/6+ ε)brφ implies that

n> 0, and hence m+ n/3> 2.

We now consider the cases m = 0 and m = 1. First, suppose m = 0. Then n = g+2≥ 6,

so m+ n/3 ≥ 2, with equality only if g = 4. If g = 4, then E is isomorphic to either

O(3)⊕O(3), or O(2)⊕O(4), or O(1)⊕O(5). For E ∼= O(3)⊕O(3), it is easy to check

that KS + (2/3+ ε)D is ample. The cases E ∼= O(2)⊕O(4) and E ∼= O(1)⊕O(5) yield

the possibilities (1) and (2), respectively, in the statement of Proposition 4.5.

Next, suppose m= 1. The ampleness of KP + (1/6+ ε)brφ implies that n= 3. Let

p ∈ L be the unique point of intersection of L with P \ L. We know that vector bundles

on L split as direct sums of line bundles, and line bundles on L are classified by their
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degree [33]. Note that the degree of a line bundle is not necessarily an integer, but an

element of 1
dZ, where d is the order of Autp L. Suppose

EL
∼= OL(a)⊕OL(b),

where a, b ∈ 1
dZ with 0 ≤ a ≤ b and a + b = n. The extremal section σ is given by

σ ∼ ζ− bF . Since C → P is an admissible triple cover, d is either 1, 2, or 3. If d = 1,

then (a, b) is either (1, 2) or (0, 3). These two cases yield the possibilities (3a) and (3b),

respectively, in the statement of Proposition 4.5.

It remains to consider the cases d = 2 and d = 3. Consider the map φL : C L → L on

coarse spaces associated to φL : CL → L. Since d > 1, we know that CL is not isomorphic

to its coarse space C L, and hence EL is not pulled back from L. Said differently, a and

b are not both integers. We have deg brφL = degbrφL + (d − 1) = 2n+ d − 1, and

deg brφL must be even. So we cannot have d = 2. For d = 3, observe that C L must be

totally ramified over p. We compute that

KS + (2/3+ ε)D
�

�

SL
·σ = ε(3ζ− nF) ·σ

= ε(2a− b).

Since C L is triply ramified over p, it is locally irreducible over p. As a result, DL does

not contain σ as a component. We conclude that DL ·σ = 2a − b ≥ 0. The further

constraints that a+ b = n and that not both a and b are integers force 2a− b > 0. As a

result, we get that KS + (2/3+ ε)D is in fact ample. �

4.1. Stable and unstable pairs in genus 4. Let g = 4, and [φ : C → P] ∈H
3

g(1/6+ε).

Let (S, D) be the pair associated to C → P by the Tschirnhausen construction.

Proposition 4.6. The pair (S, D) is a semi-stable log quadric surface. It is also stable

except in the cases enumerated in Proposition 4.5
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Proof. By Proposition 4.2, (S, 2/3 · D) is slc. By Proposition 4.5, there exists ε > 0 such

that KS+(2/3+ε)D is ample, except in the listed cases. It remains to show that 3KS+2D

is linearly equivalent to 0. It suffices to show this on the stack PEφ. We have

(4.3) KPEφ
∼= O(−2)⊗π∗ det Eφ ⊗π∗KP

where π: PEφ → P is the natural projection. By construction, we have

(4.4) O(D)∼= O(3)⊗π∗ det E∨
φ

.

Observe that 2 det Eφ is the branch divisor B of C → P. Furthermore, see that we always

have

(4.5) KP + 1/6 · B ∼ 0.

To check this, note that we either have P ∼= P1 or P ∼= P1 ∪ P2 with the 12 points of B

separated as 6+6 on the two components. In both cases, (4.5) holds. From (4.3), (4.4),

and (4.5), we get that 3KPEφ + 2D ∼ 0. �

We enumerate the strictly semi-stable and stable cases for genus 4. Recall that ε is

such that 0< ε < 1/30.

Stable pairs: A (1/6+ ε)-admissible cover φ : C → P yields a stable log quadric

surface (S, D) in the following cases.

(1) P ∼= P1 and φ : C → P is Maroni general in the sense that Eφ ∼= O(3)⊕O(3).

In this case, we see that S ∼= P1 × P1 and D ⊂ S is a divisor of bi-degree

(3, 3).

(2) P = P1 ∪s P2 is a twisted curve with two smooth irreducible components P1

and P2 attached nodally at s. Both components are rational (their coarse

spaces are P1), and the only point with a non-trivial automorphism group
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on P is the node s with Auts P = µ3. The curve C is schematic, and is

isomorphic to C1 ∪p C2, where p ∈ C is a node and Ci has arithmetic genus

2 for each i. The map φ restricts to a degree 3 map Ci → Pi, étale over

s, and p is the unique pre-image of s. In this case, we see that S is the

coarse space of a projective bundle P(O(5/3,4/3)⊕O(4/3,5/3)), where

O(a1, a2) is a line bundle on P whose restriction to Pi is O(ai). Let S1 and

S2 be the two components of S over coarse spaces of P1 and P2, respectively.

Then D ∩ Si ⊂ Si is a divisor of class 3σi + 2F where σi ⊂ Si is the image

of the unique section of P(O(5/3)⊕O(4/3)) of self-intersection (−1/3).

Furthermore, D intersects the double curve S1 ∩ S2 transversely.

Unstable pairs: A (1/6+ ε)-admissible cover φ : C → P yields a semi-stable but

not stable log quadric surface (S, D) in the following cases.

(1) P ∼= P1, and φ : C → P is Maroni special. In this case, S ∼= F2 and D ⊂ S is

a divisor of class 3σ+ 6F , where σ ⊂ S is the directrix.

(2) P ∼= P1 and C ∼= H∪p L, where L ∼= P1, and H is a curve of arithmetic genus

4 attached nodally to L at one point p. The map φ restricts to a degree 2

map H → P and to a degree 1 map L → P. In this case, S ∼= F4 and D is

the union of σ and a divisor of class 2σ+ 9F .

(3) P ∼= P1∪s P2, with Pi
∼= P1 attached nodally at a point s; and C ∼= C1∪p,q,r C2,

where p, q, r ∈ C are nodes and Ci has arithmetic genus one for each i. The

map φ restricts to a degree 3 map Ci → Pi, étale over s, and {p, q, r} is the

pre-image of s. These cases break into three further subcases. In all three

subcases, we have S = S1 ∪ S2 and D = D1 ∪ D2. The subcases are:

(a) For i = 1, 2, we have Ci = HitLi, where Li
∼= P1 and Hi is a connected

curve of genus 2. The map φ : Ci → Pi restricts to a degree 2 map

on Hi and to a degree 1 map on Li. L1 and L2 do not intersect as C

is connected. In this case, we have Si
∼= F3; and Di = σi t Hi ⊂ Si,
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where σi ⊂ Si is the unique section of self-intersection (−3) and

Hi ⊂ Si is a divisor of class 2σi + 6F intersecting the fiber S1 ∩ S2

transversely.

(b) For i = 1,2, the curve Ci is a connected curve of arithmetic genus

1. In this case, we have Si
∼= F1, and Di ⊂ Si is a divisor of class

3σi + 3F intersecting the fiber S1 ∩ S2 transversely, where σi is the

unique section of self-intersection (−1) in Si.

(c) C1, S1, D1 are as in case (3a) and C2, S2, D2 are as in case (3b).
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5. FLIPS

The goal of this section is to describe two kinds of flips that are necessary for the

stable reduction of log surfaces arising from trigonal curves. The first involves flipping a

−4 curve and the second a −3 curve on the central fiber in a family of surfaces.

5.1. Flipping a (−4) curve (Type I flip). Let ∆ be the spectrum of a DVR. Let X→∆

be a smooth, but not necessarily proper, family of surfaces. Let D ⊂ X an effective

divisor flat over ∆ with a non-singular general fiber. Denote by (X , D) the special fiber

of (X,D)→ ∆. Suppose (X , D) has the following form. We have D = σ ∪ C , where

σ ⊂ X is a −4 curve and C ⊂ X is a non-singular curve that intersects σ transversely at

one point p. In this case, we can see that (X,D) has canonical singularities.

The leftmost quadrilateral in Figure 1 is our diagrammatic representation of X along

with the configuration of curves the C and σ on it. In general, we represent surfaces by

plane polygons, and depict curves lying on the surface along the edges or on the interior.

An number next to an edge, if any, is the self-intersection of the curve represented by the

edge. Descriptive text next to a point is the description of the singularity at that point.

Construct (X ′, D′) from (X , D) as follows (see Figure 1). Let eX → X be the blow up of

X two times, first at p (the intersection point of C and σ), and second at the intersection

point of the exceptional divisor E1 of the first blow-up with the proper transform of C .

Equivalently, eX is the minimal resolution of the blow-up of X at the unique subscheme

of C of length 2 supported at p. Denote by eC ⊂ eX and eσ ⊂ eX the proper transforms of σ

and C , and by Ei ⊂ X the proper transform of the exceptional divisor of the ith blow up,

for i = 1, 2. On eX , the curves (E1, eσ) form a chain of rational curves of self-intersections

(−2,−5). Let eX → X ′ be the contraction of this chain. Then the surface X ′ is smooth

everywhere except at the image point of the rational chain, where it has the quotient

singularity 1
9(1, 2). Let C ′ ⊂ X ′ be the image of eC . Set D′ = C ′.

Figure 1 is our diagrammatic representation of the transformation from X to X ′.
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Proposition 5.1. Let (X,D)→ ∆ be a family of log surfaces as described above. Then

there exists a flat family (X′,D′)→∆ isomorphic to (X,D) over ∆◦ such that the central

fiber of (X′,D′) → ∆ is (X ′, D′). Furthermore, the threefold X′ is Q-factorial and has

canonical singularities.

Remark 5.2. Note that (X ′, D′) is log canonical. Also, it is important to observe that it

depends only on (X , D), not on the family (X,D)→∆.

The rest of § 5.1 is devoted to the proof of Proposition 5.1. In the proof, we constructX′

from X by an explicit sequence of birational transformations. We divide these birational

transformations into two stages. The first stage consists of a sequence of blow-ups along

−4 curves. The second stage consists of a sequence of a particular kind of flip, which

we call a topple. We begin by studying blow ups and topples.

5.1.1. A (−4)-blow up. Let (X,D)→∆ be as in the statement of Proposition 5.1. Let

β : eX→ X be the blow up along σ. Let eD be the proper transform of D in eX and E ⊂ eX

the exceptional divisor. The central fiber of eX→ ∆ is the union of E and the proper

transform of X , which is an isomorphic copy of X . We know that E is the projectivization

of the normal bundle of σ in X. The next lemma identifies the normal bundle.

Lemma 5.3. The normal bundle Nσ/X is given by

Nσ/X ∼=











O(−1)⊕O(−3) if D is non-singular,

O⊕O(−4) otherwise.

C

σ−4
X X ′

1
9 (1, 2)

C ′

−1 −2

−5eXeC eσ

E2 E1

E′2

FIGURE 1. The central fiber X is replaced by X ′ in a type 1 flip.
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In the first case, we have E ∼= F2, and E ∩ eD is the unique −2 curve on E. In the second

case, we have E ∼= F4, and E ∩ eD is the union of the unique −4 curve on E and a fiber F of

E→ P1.

Proof. We have the exact sequence of bundles

0→ Nσ/X → Nσ/X→ NX/X

�

�

σ
→ 0.

In this sequence, the kernel is O(−4) and the cokernel is O. Therefore, the only possi-

bilities for Nσ/X are O(−i)⊕O(−4+ i) for i = 0, 1, 2. We must now rule out i = 2, and

characterize the remaining two.

The divisor class [eD] is given by

[eD] = [β∗D]− [E].

Since eD intersects E properly, the restriction eD|E must be effective. An easy calculation

shows that
�

eD|E
�2
= −2. Now, P (O(−2)⊕O(−2)) = P1×P1 contains no effective classes

of self-intersection −2. Therefore, we can rule out the possibility of i = 2, namely the

possibility that Nσ/X ∼= O(−2)⊕O(−2).

For the remainder, we examine the map eD→D, which is the blow-up along σ, and

the curve E∩ eD. Since the central fiber of D→∆ is a nodal curve with the node at p, the

only possible singularity of D is at p. Hence, the curve E ∩ eD contains a unique reduced

component eσ mapping isomorphically to σ, and possibly some other components that

are contracted to p. As a divisor on E, we may write

E ∩ eD= s+m · f ,

for some m≥ 0, where s is a section of E→ σ and f is the fiber of E→ σ over p.

Suppose D is non-singular. Then the blow-up eD→D is an isomorphism, and therefore

we have m = 0. As a result, we see that E→ σ has a section of self-intersection (−2). We
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conclude that Nσ/X ∼= O(−1)⊕O(−3), and E∩ eD is the unique section of self-intersection

(−2).

Suppose D is singular. Then it has an An-singularity at p for some n≥ 1. In that case,

eD→ D contracts a P1. Therefore, we must have m> 0. Since F2 does not contain a class

of the form s+m · f of self-intersection (−2), we can rule out Nσ/X ∼= O(−1)⊕O(−3),

and get Nσ/X ∼= O⊕O(−4). The unique effective class of the form s+m · f on E ∼= F4 is

the union of the section of self-intersection (−4) and a fiber. �

5.1.2. A topple. Let Z → ∆ be a flat and generically smooth family of surfaces with

central fiber Z0 = S ∪ T . Let D ⊂ Z be a non-singular surface such that the central fiber

D0 of D→∆ has the form D0 = C ∪σ, where C lies on S and σ lies on T . We require

that the configuration of S, T , C , and σ is as shown in the leftmost diagram in Figure 2.

More precisely, we assume the following.

4−4

−2

S T

−1

0

−1

0 0 1
−2

0

T

−2

4−5
eS S′

1
9 (1,2)

FIGURE 2. The central fibers in a topple.

(1) The surfaces S and T meet transversely along a curve B ∼= P1. In particular, S

and T are non-singular along B.

(2) Both C and σ are non-singular, and T is non-singular along σ.

(3) B has self-intersection (−4) on S and 4 on T .

(4) σ has self-intersection (−2) on T .

(5) On S, the curves C and B intersect transversely at a unique point p. Similarly,

on T , the curves σ and B intersect transversely at the same point p.
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(6) The Neron-Severi group NS(T ) is spanned by B and σ.

We make two additional assumptions on the threefold Z. First, assume that we have a

projective morphism π: Z→ Y that is an isomorphism on the general fiber and contracts

T to a point. Second, assume that Z is non-singular along B, C , andσ, and has canonical

singularities elsewhere.

Lemma 5.4. In the setup above, there exists a family of log surfaces (Z′,∆′)→∆ isomor-

phic to (Z,∆)→∆ on the generic fiber, whose central fiber (S′, C ′) is obtained from (S, C)

by the procedure (X , C)  (X ′, C ′) described in Figure 1 with the role of σ played by B.

Furthermore, the threefold Z′ is Q-factorial, and the surface D′ is non-singular.

We say that the transformation Z ¹¹Ë Z′ is a topple along T .

Proof. We construct Z′ from Z by two blow ups and two blow downs.

Let Z1 → Z be the blow up of Z along σ; let E(1) ⊂ Z(1) be the exceptional divisor;

and let σ(1) ⊂ E(1) be the intersection of E(1) with the proper transform D(1) of D. From

an easy computation, we get that Nσ/Z ∼= O(−1)⊕O(−2), and hence E(1) ∼= F1, and

σ(1) ⊂ E(1) is the directrix.

Let Z(2)→ Z(1) be the blow up of Z(1) along σ(1). Define E(2), D(2), and σ(2) as before.

By similar computation as above, it follows that E(2) ∼= P1×P1 and σ(2) ⊂ E(2) is a ruling

line, more precisely, a line of the ruling opposite to the fibers of E(2)→ σ(1). The middle

picture in Figure 2 shows a sketch of the central fiber Z(2)0 of Z(2)→∆.

Let Z(2)→ Z(3) be the contraction in which the lines of the ruling
�

σ(2)
�

are contracted.

Note that this contractions contracts E(2) to a P1, but in the opposite way compared

to the contraction Z(2)→ Z(1). We can show that the contraction Z(2)→ Z(3) exists by

Theorem 2.12, as the curve σ(2) spans a KZ(2) negative ray in NE(π). This contraction

must contract all the ruling lines in the same class as σ(2), and therefore must contract

E to a P1. This is a divisorial contraction, and hence Z(3) is Q-factorial with canonical

singularities. It is easy to identify this divisorial contraction: since E is isomorphic to
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P1 × P1 and the contracted extremal curve is a ruling, this divisorial contraction is as

in Theorem 2.13(1), and hence Z(3) is in fact non-singular along the image of E. Let

D(3) ⊂ Z(3) be the image of D(2). The images of E(1) and T in Z(3) lie away from D(3).

The image E
(1)

of E(1) is isomorphic to P2. The image of T is isomorphic to T ; we denote

it by the same letter. Let Z(3)→ Z(4) be the contraction that maps E
(1)

to a point. This

is the contraction of the KZ(4)-negative extremal ray of NE(π) spanned by a line in E
(1)

.

The image T of T in Z(4) is a surface of Picard rank 1; the only curve class on it is [B].

Since the contraction is divisorial, Z(4) is Q-factorial with canonical singularities. As

before, it is easy to identify this divisorial contraction: since E
(1)

is isomorphic to P2, the

threefold Z(3) is non-singular along E
(1)

, and the normal bundle of E
(1)

is isomorphic to

O(−2), the divisorial contraction is as in Theorem 2.13(5), and Z(4) has the quotient

singularity A3/Z2 at the image point of E
(1)

. Finally, let Z(4) → Z′ be the contraction

that maps T to a point. It is the contraction of the KZ(4)-negative extremal curve [B]

of NE(π). The rightmost picture in Figure 2 shows a sketch of the central fiber Z′0 of

Z′→∆.

Set S′ = Z′0 and C ′ =D′0. The threefold Z′0 is canonical, and hence Cohen–Macaulay.

Theerfore, S′ is also Cohen-Macaulay, and since it is non-singular in codimension 1,

it is normal. Observe that the transformation from S to S′ is exactly as described in

Figure 1—two blow ups on C followed by the contraction of a (−2,−5) chain of P1s,

resulting in a 1
9(1, 2) singularity. �

Remark 5.5. In the notation of Lemma 5.4, note that the Picard rank of S′ is the same

as the Picard rank of S, and the self intersection of C ′ on S′ is given in terms of the

self-intersection of C on S by

C ′2 = C2 − 2.

5.1.3. Proof of Proposition 5.1. Having described the two required birational transfor-

mations, we take up the proof of Proposition 5.1.
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The transformation from (X,D) to (X′,D′) goes through a number of intermediate

steps (X(i),D(i)), which can be divided into two stages. Throughout, D(i) ⊂ X(i) denotes

the closure of D
�

�

∆◦
in X(i).

Let π: X→ Y be the contraction of the curve σ. All the intermediate steps X(i) will

be projective over Y. We use the letter π to denote the obvious map from various spaces

to Y.

Stage 1 (Blowups): Set X(0) = X, E0 = X , D(0) =D, and σ(0) = σ. For a Hirzebruch

surface E ∼= Fk for k ≥ 1, denote by σE the directrix, namely the unique section of

self-intersection (−k).

Suppose D(0) has an An singularity at p, where n ≥ 1. Let X(1) = BlσX. Denote by

E1 ⊂ X(1) the exceptional divisor and D(1) the proper transform of D(0). By Lemma 5.3,

we have E1
∼= F4 and D(1) ∩ E1 = σE1 ∪ F . Set σ(1) = σE1 . Note that Lemma 5.3 applies

to σ(1) ⊂ X(1) and its blow up. Indeed, the conditions on the central fiber of (X,D) hold

for (X(1),D(1)) in an open subset around the −4 curve σ(1) (the role of σ is played by

σ(1), and the role of C by F). Note that after the blowup, D(1) has an An−1 singularity.

Continue blowing up the −4 curves in this way, obtaining a sequence

X(n)→ ·· · → X(1)→ X(0).

Figure 3a shows the central fiber of X(n)→∆. In this figure, some curves are labelled

with two numbers. Note that these curves lie on two surfaces; the two numbers are the

self-intersection numbers of the curve on either surface.

We now continue from X(n) and the non-singular surface D(n), where n ≥ 0. Let

X(n+1)→ X(n) be the blow up of the −4 curve σ(n) ⊂ X(n). By Lemma 5.3, the exceptional

divisor En+1 is isomorphic to F2 and it intersects the proper transform D(n+1) of D(n) in

the unique (−2) curve σEn+1 . Set σ(n+1) = σEn+1 . Figure 3b shows the central fiber of

X(n+1)→∆.
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. . .

C

−4 4 −4
4

−4 4 −4

0 0 0

(A) The central fiber of X(n)→∆

−2

4

. . .

C

−4 4
−4 4 −4 4 −4

0 0 0

(B) The central fiber of X(n+1)→∆

FIGURE 3. The central fibers of the nth and the (n+ 1)th blow up

Stage 2 (Topples): We now continue with X(n+1), whose central fiber is the union

X
(n+1)
0 = E(0) ∪ · · · ∪ E(n) ∪ E(n+1).

After restricting to an open set containing E(n+1), we see that we can topple X(n+1) along

E(n+1). That is, the family (X(n+1),D(n+1))→∆ satisfies the assumptions of Lemma 5.4.

Let X(n+1) ¹¹Ë X(n+2) be the topple along E(n+1). Denote by E(n+2) (resp. D(n+2)) the

image of E(n) (resp. D(n+1)) under the topple. Then the central fiber of X(n+2) is the

union

X
(n+2)
0 = E(0) ∪ · · · ∪ E(n−1) ∪ E(n+2).

See Figure 4 for a sketch of this configuration.

−2

44 −4

0

−4 −4 4

−2

FIGURE 4. The central fibers in one step of the sequence of topples

We observe again that an open subset containing E(n+2) satisfies the assumptions of

Lemma 5.4, and we continue the process by toppling X(n+2) along E(n+2). After (n+ 1)
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topples, we arrive at a pair (X′,D′) = (X(2n+2),D(2n+2)). Note that in the very first topple,

the toppled surface E(n+1) is isomorphic to F2. In the subsequent topples, however,

the toppled surface is different—it is a rational surface of Picard rank 2 with a 1
9(1,2)

singularity (the singularity is not shown in Figure 4).

By construction, X′ is Q-factorial with canonical singularities. In particular, both D′

and KX′ are Q-Cartier. By construction, the central fiber of (X′,D′)→∆ is (X ′, D′). The

proof of Proposition 5.1 is now complete.

5.2. Flipping a (−3) curve (Type II flip). Let ∆ be the spectrum of a DVR. Let X→∆

be a flat family of surfaces and D ⊂ X a divisor flat over ∆. Assume that both X→∆

and D→ ∆ are smooth over ∆◦. Suppose the central fiber (X , D) of (X,D)→ ∆ has

the following form: X is reduced and has two non-singular irreducible components S, T ,

which meet transversely along a non-singular curve B, and D = C ∪σ, where σ ⊂ T is a

(−3)-curve that meets B transversely at a point p and C ⊂ S is a non-singular curve that

meets B transversely at the same point p. Recall that a (−3)-curve is a curve isomorphic

to P1 whose self-intersection is −3. The left-most diagram in Figure 5 shows a sketch of

(X , D).

S T

B
C σ

X eX X ′

q

eS

eT

eB

eC

E1

E2

E3

−2

−2

−1

σ

S′
T ′

C ′

FIGURE 5. The central fiber X is replaced by X ′ in a type 2 flip.

Construct (X ′, D′) from (X , D) as follows (see Figure 5). Let eS → S be the blow up

of S three times, first at p, second at the intersection of the exceptional divisor of the

first blow-up with the proper transform of C , and third at the intersection point of the
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exceptional divisor of the second blow up with the proper transform of C . Equivalently,

eS is the minimal resolution of the blow-up of S at the unique subscheme of C of length 3

supported at p. Denote by eC and eB the proper transforms of C and B in eS. Let eX be the

union of eS and T , glued along eB ⊂ eS and B ⊂ T via the canonical isomorphism eB→ B

induced by the identity on B. Let Ei be the proper transform in eS of the exceptional

divisor of the ith blowup, for i = 1,2,3. Let S′ be obtained from eS by contracting eE1

and eE2. Let T ′ be obtained from T by contracting σ. Let X ′ be the union of S′ and T ′

glued along the image of eB in S′ and the image of B in T ′ via the isomorphism between

the two induced by the identity on B. Let B′ ⊂ X ′ be the image of either of these curves.

Let C ′ ⊂ X ′ be the image of eC , and set D′ = C ′. Let ν ⊂ X ′ be the image of E3 ⊂ eS.

We would like to prove that we can replace (X , D) on the central fiber by (X ′, D′) under

an additional hypothesis on the structure of (X,D) along B. Assume that there exists a

family of (not necessarily projective) curves P→∆, smooth over ∆◦, and with a single

node p on the central fiber, an open subset U ⊂ X containing B, and an isomorphism

U∼= B ×P over ∆. Assume, furthermore, that the first projection U→ P restricts to an

isomorphism D∩U→ P.

Proposition 5.6. Let (X,D)→ ∆ be a family of log surfaces as described above. There

exists a flat family (X′,D′)→∆ isomorphic to (X,D) over ∆◦ such that the central fiber

of (X′,D′)→∆ is (X ′, D′). Furthermore, X′ is Q-factorial and has canonical singularities.

Remark 5.7. Note that (X ′, D′) is log canonical. Also note that it depends only on (X , D),

not on the family (X,D)→∆.

Before proving Proposition 5.6, we look at X ′ and its two components S′ and T ′ in

more detail. The contraction eS → S′ results an A2 =
1
3(1,2) singularity on S′ at the

image point of the chain E1, E2. The contraction T → T ′ results in a 1
3(1, 1) singularity

at the image point of the curve σ. These two singularities are glued together in X ′, say
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at a point q. The complete local ring of X ′ at q is the ring of invariants of

C¹x , y, zº/(x y)

under the action of µ3 where an element ζ ∈ µ3 acts by

ζ · (x , y, z) 7→ ζ(x ,ζ2 y,ζz).

Finally, observe that the Picard ranks of the new surfaces are given by

ρ(S′) = ρ(S) + 1, and

ρ(T ′) = ρ(T )− 1.

On S′, we have the intersection numbers

(C ′)2 = C2 − 3,

ν2 = −
1
3

, and

B′ · ν=
1
3

.

On S′ and T ′, we have the following intersection numbers of B′

�

B′|S′
�2
= (B|S)

2 −
1
3

, and

�

B′|T ′
�2
= (B|T )

2 +
1
3

.

5.2.1. Proof of Proposition 5.6: The non-singular case. Assume that P is non-singular.

Then both X and D are non-singular.
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We construct X′ from X by an explicit sequence of blow ups and blow downs. We

denote the intermediate steps in this process by X(i). Throughout, D(i) ⊂ X(i) denotes the

closure of D
�

�

∆◦
in X(i), or equivalently the proper transform of D in X(i). Let π: X→ Y

be the contraction of σ. All the X(i) will be projective over Y.

The first three steps consist of blow-ups; their central fibers are depicted in Figure 6.

S T
B

C σ

−3

X X (2) X (3)

−2

−3
2

X (1)

−2
1

−1

2
−1

−2
1

−1

2
−1

0
0

FIGURE 6. The central fibers X (i) of the first three blow ups X(i) of X.

The first step X(1)→ X is the blow up at σ. Let E(1) ⊂ X(1) be the exceptional divisor.

Note that the central fiber of X(1) → ∆ is the union of E(1) and the proper transform

X (1) of X . The surface X (1) has two smooth irreducible components, namely Blp S and

T , which intersect transversely along the proper transform of B. Set σ(1) = E(1) ∩D(1).

The following lemma identifies the normal bundle of σ and hence the isomorphism

class of E(1).

Lemma 5.8. The normal bundle Nσ/X is given by

Nσ/X ∼= O(−1)⊕O(−3).

As a result, we have E(1) ∼= F2, and σ(1) is the unique −2 curve on E(1).

Proof. We have the exact sequence of bundles

0→ Nσ/T → Nσ/X→ NT/X

�

�

σ
→ 0,
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in which the kernel is O(−3) and the cokernel is O(−1). Therefore, the only possibilities

for Nσ/X are O(−i)⊕O(−4+ i) for i = 1,2.

A simple divisor class computation shows that D(1) ∩ E is an effective divisor on E

of self-intersection (−2). The map D(1) → D is the blow-up of D along σ. Since D

is non-singular, this is an isomorphism. Therefore, the scheme-theoretic intersection

D(1) ∩ E is a section of E→ σ. Among the two possibilities for E given by i = 1, 2, only

i = 1 yields a surface with a section of self-intersection (−2). The result follows. �

The second step X(2) → X(1) is the blow up of X(1) along σ(1). Define E(2), D(2),

and σ(2) as before. By similar computation as in the proof of Lemma 5.8, we get that

E(2) ∼= F1 and σ(2) ⊂ E(2) is the unique curve of self-intersection (−1).

The third step X(3)→ X(2) is the blow up of X(3) along σ(2). Define E(3), D(3), and σ(3)

as before. Again, by a similar computation as before, we get that E(3) ∼= P1 × P1 and

σ(3) ⊂ E(3) is a line of a ruling, opposite to the fibers of E(3)→ σ(2).

The next three steps consist of divisorial contractions.

Let X(3)→ X(4) be the contraction in which the lines of the ruling ofσ(3) are contracted.

This results in the contraction of E(3) in the opposite direction as compared with the

contraction in X(3)→ X(2). Note that this is the contraction of the KX(3)-negative extremal

ray of NE(π) spanned by σ(3), and thus its existence is guaranteed by Theorem 2.12.

Since this is a divisorial contraction, X(4) is Q-factorial with canonical singularities.

In fact, it turns out that the contraction does not introduce any new singularities (by

Theorem 2.13(1)). Let D(4) ⊂ X(4) be the image of D(3). The images of E(1) and E(2)

in X(4) lie away from D(4). The image E
(2)

of E(2) is isomorphic to P2. The image of is

isomorphic to E(1); we denote it by the same notation.

Let X(4)→ X(5) be the map that contracts E
(2)

to a point. This is the contraction of the

KX(4)-negative extremal ray of NE(π) spanned by a line in E
(2)

. Again, X(5) is Q-factorial

with canonical singularities. The image E
(1)

of E(1) is a surface of Picard rank 1; the only

curve class on it is [τ], where τ is the image of E(1)∩Blp S. The only new singularity on
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X(5) is at the image point of E
(2)

; it is the quotient singularity A3/Z2 where the generator

of Z2 acts by (x , y, z) 7→ (−x ,−y,−z) (by Theorem 2.13(5)).

Finally, let X(5)→ X′ be the contraction that maps E
(1)

to a point. It is the contraction

of the KX(5)-negative extremal curve [τ] of NE(π).

Set X ′ = X′0 and D′ = D′0. Observe that the transformation from X to X ′ is exactly

as described in Proposition 5.6—on one component S, it is the result of two blow

ups on C followed by the contraction of a (−2,−2) chain of P1s, resulting in an A2

singularity. On the other component T , it is just the contraction of σ, resulting in a

1
3(1, 1) singularity. The proof of Proposition 5.6 is now complete, under the assumption

that P is non-singular.

5.2.2. Proof of Proposition 5.6: The general case. We now boot-strap to the general case

from the non-singular case.

Since the central fiber of P→∆ has a nodal singularity at p, the surface P has an An

singularity at p for some n≥ 0. We have already dispensed the case n= 0, so assume

n≥ 1. Let P(0)→ P be the minimal resolution of singularities. The exceptional divisor

of P(0)0 consists of a chain of n rational curves. Set

X(0) =
�

U×P P
(0)
�
⋃

U\B
(X \ B)

=
�

B ×P(0)
�
⋃

U\B
(X \ B) .

Then we have a map X(0)→ X, which is a resolution of singularities. The central fiber

X (0) of X(0)→∆ is the union

X (0) = S(0) ∪ E(0)1 ∪ · · · ∪ E(0)n ∪ T (0),

where S(0) and T (0) denote the strict transforms of S and T , and each E(0)i is isomorphic

to B×P1. Let D(0) be the proper transform of D, and σ(0) and C (0) the proper transforms

of σ and C , respectively. Since the map D→ P is an isomorphism over an open subset
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of P containing p, the map D(0) ∩U→ P(0) is an isomorphism over an open subset of

P(0) containing the pre-image of p in P(0). In particular, D(0) is non-singular. Also, the

intersection Di := D(0) ∩ E(0)i is a section of E(0)i → P
1. See Figure 7 for a picture of

(X0,D(0)).

S(0) B × P1 B × P1 B × P1 T (0)
. . .

σ(0)

FIGURE 7. The accordion-like central fiber of (X(0),D(0))

We now apply the non-singular case of Proposition 5.6 repeatedly to pair
�

X(0),D(0)
�

.

First flip the (−3) curve σ(0) by applying Proposition 5.6 to an open subset of X(0)

containing σ(0). The role of S and T is played by E(0)n = B × P1 and T (0), respectively.

The resulting threefold X(1) (see Figure 8) has central fiber

X (1) = S(1) ∪ E(1)1 ∪ · · · ∪ E(1)n ∪ T (1)

as shown in Figure 8, where S(1) = S(0) and E(1)i = E(0)i for i = 1, . . . , n− 1, whereas E(1)n

is a surface with an A2 singularity obtained by three blow ups and two blow downs from

E(0)n , and T (1) is obtained from T (0) by contracting σ(0). Note that the transformations

E(0)n ¹¹Ë E(1)n and T (0)→ T (1) are simply the transformations S ¹¹Ë S′ and T → T ′ from

Proposition 5.6. The proper transform of Dn on E(0)n is a (−3) curve σ(1) on E(1)n . Note

that σ(1) lies in the non-singular locus of E(1)n and X(1), away from T (1).

. . .

σ(1)

S(0) B × P1 B × P1
T ′

FIGURE 8. A modified accordion after a (−3) flip
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Once more, flip the (−3) curve σ(1) by applying Proposition 5.6 to an open subset of

X(1) containing σ(1). Now the role of S and T is played by E(1)n−1 and E(1)n , respectively.

The resulting threefold X(2) has central fiber

X (2) = S(2) ∪ E(2)1 ∪ · · · ∪ E(2)n−1 ∪ E(2)n ∪ T (2),

where the only components that are different from their previous counterparts are E(2)n−1

and E(2)n . The surface E(2)n−1 is obtained by three blow ups and two blow downs from

E(1)n−1, and E(2)n is obtained from E(1)n by contracting σ(1). The proper transform of Dn−1

on E(1)n−1 is a (−3) curve σ(2) on E(2)n−1, which lies in the non-singular locus of E(2)n−1 and

X(2), and away from E(2)n .

Continue flipping the (−3) curves σ(i), for i = 2,3, . . . , n, resulting in a threefold

X(n+1) which has central fiber

X (n+1) = S(n+1) ∪ E(n+1)
1 ∪ · · · ∪ E(n+1)

n ∪ T (n+1).

Note that we now have S(n+1) ∼= S′, obtained by three blow ups and two blow downs

from S as described in Proposition 5.6, and T (n+1) ∼= T ′, obtained by contracting the

(−3) curve σ on T . The intermediate components E(n+1)
i are obtained by 3 blow-ups

and 3 blow-downs on E(0)i
∼= B × P1. Notice that the curves that are blown down are

contracted under the map to B. As a result, the projection map E(0)i → B survives as a

regular map E(n+1)
i → B.

Note that KX (n+1) +wD(n+1) is nef but not ample on E(n+1)
i ; it is trivial on the fibers of

E(n+1)
i → B. Recall thatX→ Y is the contraction ofσ, and we have a projective morphism

ψ: X(n+1)→ Y. The bundle Kψ+wD is nef, hence semi-ample by Theorem 2.20. It gives

a divisorial contraction X(n+1)→ X′ in which all E(n+1)
i are contracted to B.

Let D′ be the image of D(n+1). By construction X′ is Q-factorial with canonical

singularities. Furthermore, the central fiber (X ′, D′) is as required in Proposition 5.6.

The proof of Proposition 5.6 is now complete in general.
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6. STABLE REPLACEMENTS OF UNSTABLE PAIRS

The goal of this section is to prove properness of the moduli stack of stable log quadrics

X by enhancing the partial valuative criterion of properness Proposition 3.11. The key

step is to construct all limits of stable log quadrics over a punctured DVR and verify that

the limits are indeed stable log quadrics.

Let∆ be a DVR and (Xη,Dη)∼= ((P1×P1)η, C) be a stable log surface over the generic

point η of ∆ where C is a smooth curve of bi-degree (3, 3). Possibly after a finite base

change, (Xη,Dη) extends to a family (X,D)→∆ such that the central fiber (X , D) is a

stable log surface and both KX/∆ and D are Q-Cartier by Proposition 3.11. We describe

all possible (X , D) in subsequent subsections and verify that they all satisfy the index

condition Definition 3.4. This confirms that (X,D) ∈ X(∆), and shows the valuative

criteria of properness of X. We do this explicitly and independently of the proof sketched

after Proposition 3.11.

Consider φ : Dη→ P1
η

induced by the first projection (P1 × P1)η→ P1
η

as a η-valued

point of H3
4. Let C→ P be its unique extension to a ∆-valued point of H

3

4(1/6+ ε),

possibly after a base-change. Note that P→∆ is an orbi-nodal curve of genus 0. Let E

be the Tschirnhausen bundle of φ : C→ P. By the procedure described in Section 4, φ

gives a divisor D(φ) in PE. By a closer inspection, we can see that (X, (2/3+ ε)D) is

klt (by modifying proof of Proposition 4.2) Let (X,D) be the coarse space of (PE,`(φ)).

Let (X , D) be the fiber of (X,D) over the closed point 0 ∈ ∆. By Proposition 4.6, the

fibers of (X,D)→∆ are semi-stable log quadric surfaces. By construction, the general

fiber is also stable, but the special fiber need not be. Since X is Q-factorial and the

central fiber (X , D) satisfies the index condition by Remark 4.4, the family (X,D)→∆

is Q-Gorenstein Lemma 3.9. The goal of this section is to prove the following.

Theorem 6.1 (Stabilization). Let (X,D)→∆ be as above. There exists a Q-Gorenstein

family (X,D)→∆ of stable log quadrics with generic fiber (Xη,Dη) on η. Furthermore,
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the central fiber (X , D) of (X,D) → ∆ depends only on the central fiber (X , D) of the

original family (X,D)→∆.

Since X is separated, the family (X,D)→∆ is unique up to isomorphism. Theorem 6.1

proves the valuative criteria for properness for X. We highlight that, after obtaining the

semi-stable family (X,D), a further base change is not necessary to get to the stable

family. Furthermore, the central fiber of the stable family depends only on the central

fiber of the original family.

Outline of proof of Theorem 6.1. If KX + (2/3 + ε)D is ample for some ε > 0, then

(X,D) = (X,D), and there is nothing to prove. The end of Section 4 lists the pos-

sibilities for C → P for which KX + (2/3+ ε)D fails to be ample for all ε > 0. In all

these cases, we construct (X,D) from (X,D) by explicitly running a minimal model

program on the threefold X (see § 2.2) using the birational transformations described

in Section 5. This program consists of the following two steps.

Step 1 (Flips): By a sequence of flips on the central fiber ofX, we construct (X′,D′)→

∆ with slc fibers and Q-factorial total space X′ such that KX′ + (2/3+ ε)D′ is Q-Cartier

and nef for all sufficiently small ε > 0. Our construction shows that the central fiber of

(X′,D′) depends only on the central fiber of (X,D).

Step 2 (Contractions): Set w= 2/3+ ε, where ε > 0 is such that KX′ + (2/3+ ε)D′

is nef. By Theorem 2.20, the divisor KX′ +wD′ is semi-ample. We set

X= Proj

�

⊕

n≥0

H0
�

X′, n
�

KX′ +wD′
��

�

,

and let D be the image of D′ in X. For this step, it is clear that the central fiber (X , D) of

(X,D)→∆ depends only on the central fiber of (X′,D′). We describe (X , D) explicitly,

culminating in the classification in Table 1. It is easy to check from the description

that (X , wD) is slc. We also observe that D ⊂ X is a Cartier divisor that stays away

from the non-Gorenstein singularities of X . Hence, (X , D) satisfies the index condition.
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Furthermore, by construction, both KX and D are Q-Cartier divisors, so the family

(X,D)→∆ is Q-Gorenstein by Lemma 3.9.

To complete the proof of Theorem 6.1, we must carry out the two steps in each case

listed at the end of Section 4. We do this in separate subsections that follow. �

Remark 6.2. In all the cases, it is possible to show directly that KX′ +wD′ is semi-ample,

avoiding appealing to the log abundance theorem. In fact, our proof that KX′ + wD′

is nef also yield it is semi-ample on the central fiber. To deduce that it is semi-ample

on the whole threefold, it suffices to show that H i (X ′, n(KX ′ +wD′)) = 0 for i > 0 and

for sufficiently large and divisible n. Proving this vanishing is also fairly easy from the

geometry of (X ′, D′). Nevertheless, we appeal to the log abundance theorem to keep

the length of the proof reasonable.

6.1. Maroni special covers. Suppose C → P is as in case (1) of the unstable list from

page 45. That is, P ∼= P1 and C → P is Maroni special. In this case, X ∼= F2 and D ⊂ X is

a divisor of class 3σ+ 6F .

Step 1 (Flips): In this case, KX +wD is already nef, so we do not need any flips.

Step 2 (Contractions): The only (KX + wD)-trivial curve is σ. The contraction step

contracts σ ⊂ X to a point, resulting in X isomorphic to the weighted projective plane

P(1, 1,2).

There are two possibilities on how the curve D interacts with the unique singular

point p ∈ X . The first possibility is that D ⊂ X is disjoint from σ. In this case, D is away

from the singularity. The second possibility is that D ⊂ X contains σ as a component. In

this case D = σ∪ E, where E does not contain σ and E ·σ = 2. Therefore, D = E; this

passes through the singularity of X and has either a node or a cusp there, depending on

whether E intersects σ transversely at 2 points or tangentially at 1 point. The two steps

in required for the proof of Theorem 6.1 are thus complete.
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6.2. Hyperelliptic covers. Suppose C → P is as in case (2) of the unstable list from

page 45. That is, P ∼= P1 and C = P1 ∪ H, where H is a hyperelliptic curve of genus 4

attached nodally to P1 at one point. In this case, S ∼= F4 and D is the union of σ ∼= P1

and a divisor of class 2σ+ 9F isomorphic to H; we denote the divisor also by the letter

H. Note that H intersects σ at a unique point, say p.

Step 1 (Flips): Let (X′,D′) be the family obtained from (X,D) by flipping the −4 curve

σ; this flip is constructed in § 5.1. Let (X ′, D′) be the central fiber of (X′,D′) → ∆.

Recall that the relationship between X and X ′ is given by the diagram

(6.1) X ← eX → X ′

where eX is obtained from X by blowing up the point p and the intersection point q of

the proper transform of H and the exceptional divisor of the first blowup. Let F be the

fiber of X → P1 through p. Denote the proper transforms of σ, F , and H by the same

letters, and denote by E1 and E2 be the exceptional divisors of the two blow-ups. Then

eX → X ′ is obtained by contracting σ and E1.

Step 2 (Contractions): There are three possibilities for the ramification behavior of

H → P1 at p, which dictate the result of the contraction step. To analyze the contracted

curves, it is necessary to look at the configuration of the curves {σ, H, F, E1, E2} on eX ,

which we encode by its dual graph.

Case 1: H → P1 is unramified at p.

In this case, KX′ + wD′ is ample, and hence (X,D) = (X′,D′). To see the

ampleness, observe that on eX we have the dual graph

σ

−5

E1

−2 E2

−1

F

−1 H

.
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Let E′2 and F ′ be the image in X ′ of E2 and F on eX . From the dual graph above,

we obtain the following intersection table on X ′

E′2 F ′ KX ′ D′

E′2 −4/9 5/9 −2/3 1

F ′ 5/9 −4/9 −2/3 1.

Since X ′ is a Q-factorial surface of Picard rank 2, and E′2 and F ′ have negative

self-intersection, they must span NE(X ′). We have

(KX ′ +wD′) · E′2 = (KX ′ +wD′) · F ′ = ε > 0,

so KX′ +wD′ is ample.

Note that the surface X = X ′ has a 1
9(1, 2) singularity obtained by contracting

the chain (σ, E1). The divisor D = D′ stays away from the singularity.

Case 2: H → P1 is ramified at p.

In this case, the dual graph is

σ

−5

E1

−2

E2

−1

F

−2

H

.

As in case 1, we get that NE(X ′) is spanned by the images E′2 and F ′ of E2 and

F , and we have

(KX ′ +wD′) · E′2 = ε > 0, and

(KX ′ +wD′) · F ′ = 0.

Therefore, the contraction step contracts F ′, resulting in an A1 singularity on X .

The divisor D stays away from the singularity.
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Remark 6.3. Similarly to Remark 6.6, when H is smooth, X is determined from

a hyperelliptic curve H with a hyperelliptic divisor 2p, and H is on non-singular

locus of X .

Case 3: H contains F as a component.

6.2.1. H contains F as a component. In this case, let H = F ∪ G, where G is the

residual curve. We have the dual graph

σ

−5

E1

−2

E2

−1

F

−2

G .

For the same reason as in case 2, KX ′ +wD′ is nef and it contracts the curve F ,

resulting in a surface X with an A1 singularity. Note, however, that the divisor

D–which is the image of G–passes through the A1 singularity. If F intersects G

transversely in 2 distinct points, then D has a node at the A1 singularity. If F

intersects G tangentially at 1 point, then D has a cusp at the A1 singularity.

The two steps in required for the proof of Theorem 6.1 are now complete.

Remark 6.4. We record some properties of X and D obtained in each case. In case

1, X is obtained from X by two blow-ups and and two blow-downs. The blow-ups

use the auxiliary data of the point p on the hyperelliptic component H of D and the

tangent direction to H at p; the blow-downs do not require any auxiliary data. The

automorphism group of X acts transitively on the necessary auxiliary data, and therefore

the isomorphism class of X is independent of D. The blow-downs result in a unique

singular point on X corresponding to a 1
9(1, 2) singularity. It is easy to see that X is not

a toric surface. In case 2 and case 3, the tangent direction to H at p is along the fiber of

X through p. As a result, X is a toric surface. More precisely, it is easy to figure out that

X is isomorphic to P(1,2, 9).
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Remark 6.5. Observe that the covers C → P in cases 2 and 3 are specializations of the

covers in case 1. By considering the family of surfaces X in such a specialization, we

see that the non-toric surface X in case 1 specializes to P(1, 2, 9). In other words, X is a

smoothing of the A1 singularity on P(1, 2, 9). We can check that in this family of surfaces,

both K and D are Q-Gorenstein, so the family is a Q-Gorenstein family (Lemma 3.9).

Remark 6.6. Suppose we are in the generic case, namely with H smooth and H → P1

unramified at p. The hyperelliptic involution of H extends to an automorphism of eX .

This automorphism fixes σ point-wise, fixes E1 as a set, and interchanges E2 and F . It

descends to an automorphism on X that interchanges the two extremal rays E1 and F

of the NE(X ).

6.3. The F3 − F3 case. Suppose we are in case (3a) of the unstable list from page 45.

That is, C = C1 ∪ C2 mapping to P = P1 ∪ P1, where Ci is the disjoint union of P1 and a

hyperelliptic curve Hi of genus 2. In this case, X = X1 ∪ X2, where X i
∼= F3 and Di ⊂ X i

is the disjoint union of the directrix σi and a curve Hi of class 2σi + 6F . Since C is

connected, we note that σ1 intersects X2 and is disjoint from σ2, and vice-versa.

Step 1 (Flips): Let (X′,D′) be the family obtained from (X,D) by flipping the −3 curves

σ1 and σ2. Let (X ′, D′) be the central fiber of (X′ → D′)→ ∆. The surface X ′ is the

union of two components X ′1 ∪ X ′2, where each X ′i is related to X i by a diagram

X i ← eX i → X ′i .

This diagram is given by Figure 5; the role of S and T is played by X1 and X2 while

flipping σ2 and by X2 and X1 while flipping σ1. To recall, eX i → X i is the blow-up of X i

three times, first at Di ∩σi, and two more times at the proper transform of Di and the

most recent exceptional divisor. Denote the exceptional divisor of the jth blowup by

Ei j for j = 1,2,3; use the same letters to denote proper transforms; and denote by F

the curve X1 ∩ X2. Then, eX i → X ′i is the blow down of Ei1, Ei2, and σi. Note that X ′i has
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a µ3 singularity at the image point of σi, and an A2 singularity at the image point of

E1 ∪ E2; it is smooth elsewhere.

Step 2 (Contractions): We claim that KX′ +wD′ is already ample, and hence no contrac-

tions are necessary. In other words, we have (X,D) = (X′,D′).

To show the ampleness, we must show that KX ′+wD′ is positive on N E(X ′i ) for i = 1, 2.

The dual graph of the configuration of curves {σi, E1, E2, E3, Hi} on eX i is

σi

−3

F

−1

E1

−2

E2

−2

E3

−1

Hi .

Denote by F ′ and E′3 the images in X ′i of F and E3, respectively. Using the dual graph

above, we get the following intersection table on X ′i :

E′3 F ′ K D′

E′3 −1/3 1/3 −1 1

F ′ 1/3 −5/6 1/3 1

Since X ′i is of Picard rank 2, and the two curves F ′ and E′3 have negative self-intersection,

they generate N E(X ′i ). Now we compute

(KX ′ +wD′) · E′3 = ε > 0

(KX ′ +wD′) · F ′ = 1/6+ ε > 0.

Hence KX ′ +wD′ is ample on X i for i = 1, 2.

The two steps required in the proof of Theorem 6.1 are now complete.

Remark 6.7. We record some properties of the (X , D) we found above.

First, note that X is determined from X by two length 3 subschemes of X1 and X2,

namely the curvilinear subschemes of length 3 on H1 and H2 supported at σ1 ∩H2 and
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σ2 ∩H1. All such data are equivalent modulo the action of the automorphism group of

X . Therefore, the isomorphism type of X is uniquely determined.

Second, note that the two components of X are toric. To see this, note that there

are toric structures on the surfaces X i ’s such that the σi ’s and the curvilinear sub-

schemes of length 3 above are torus fixed. Tracing through the transformation of X

to X , we see X may be represented as the a degenerate (non-normal) toric surface

represented by the union of the quadrilaterals 〈(−3,−2), (−3,−1), (3,1), (3,−2)〉 and

〈(−3,−1), (−3, 2), (3,2), (3, 1)〉 (see Figure 9).

(−3,−2)

(−3,−1)

(−3, 2)

(3,−2)

(3, 1)

(3, 2)

FIGURE 9. The non-normal toric surface X obtained in th F3 − F3 case

Finally, let p, q ∈ X be the images of σ1,σ2, respectively. Then X has the singularity

type (x y = 0) ⊂ 1
3(1,2, 1) at p, and (x y = 0) ⊂ 1

3(2,1, 1) at q.

It turns out that X also appears as a stable limit in a different guise.

Proposition 6.8. (X , D) is isomorphic to a log surface appearing in (2) of the stable list

from page 44.

Proof. Let F = X 1 ∩ X 2, and let x i ∈ Hi to be the point of X i that gets blown up 3 times

in the construction of X i from X i.

Let f be the class of in X i of the image of the proper transform of a section τ of

X i
∼= F3 which is triply tangent to Hi at x i and satisfies τ2 = 3. Then we have

f 2 = 0, f · F = 0, and D|X i
· f = 3.

Moreover, there is a 1-parameter families of such sections τ, and the proper transforms

of different sections yield disjoint images in X i. The section σi + 3F is a particular such
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τ. The image of its proper transform is the divisor 3F . Thus, the line bundle associated

to f is base-point free. It induces a map

πi : X i → P1,

which is generically a P1-fibration.

Define the stack Yi by

Yi =

�

spec

�

⊕

n∈Z
OX i

�

nF
�

�

�

Gm

�

.

The natural map Yi → X i is the coarse space map, and the divisorial pullback of OX i
(F)

to Yi is Cartier. A simple local calculation shows that over the two singular points of X i,

the map Yi → X i has the form

[specK[x , y]
�

µ3]→ specK[x , y]/µ3.

Let 0 ∈ P1 be the image of F ⊂ X i. Set Pi = P1( 3p0). Since the scheme theoretic

pre-image of 0 is 3F , which is 3 times a Cartier divisor on Yi, the natural map Yi → P1

gives a map π: Yi → Pi. It is easy to check that Yi → Pi is the P1-bundle

Yi = P(O(5/3)⊕O(4/3)).

Note that Di ⊂ X i lies away from the singularities of X i. Hence, it gives a divisor on Yi,

which we denote by the same symbol. We also see that Di → Pi is of the divisor class

O(3)⊗π∗O(−3), and therefore is obtained from the Tschirnhausen construction from a

triple cover Ci → Pi. Putting together the triple covers for i = 1, 2, we obtain an element

φ : C1 ∪ C2→ P1 ∪ P2 of type (2) on page 44. �

The description of X as the degenerate toric surface given by the subdivided polytope

in Figure 9 can also be obtained using the alternate description of X as the coarse space

of P(O(4/3, 5/3)⊕O(5/3, 4/3)) obtained in Proposition 6.8.
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6.4. The F1 − F1 case. Suppose we are in case (3b) of the unstable list from page 46.

That is, C = C1 ∪ C2 mapping to P = P1 ∪ P1, where Ci is a connected curve of genus

1; X i
∼= F1; and Di ⊂ X i is a divisor of class 3σi + 3F intersecting the fiber X1 ∪ X2

transversely.

Step 1 (Flips). In this case, we observe that KX′ +wD′ is nef. Its restriction to each F1 is

a multiple of the class σ+ F . Therefore, no flips are required; that is, (X′,D′) = (X,D).

Step 2 (Contractions). The only KX′ +wD′ trivial curves are the directrices σi ’s on the

X ′i . Therefore, X is the union of two copies of P2 along a line, and D is D1 ∪ D2. Each Di

is a cubic curve, intersecting the line of attachment transversely.

The two steps necessary for the proof of Theorem 6.1 are thus complete.

6.5. The F3 − F1 case. Suppose we are in case (3c) of the unstable list from page 46,

which is a mixture of the two cases (3b) and (3a) treated before. That is, C = C1 ∪ C2

mapping to P = P1∪P1, where C1 is the disjoint union of P1 and a hyperelliptic curve of

genus 2, and C2 is a connected curve of genus 1. In this case X = X1∪X2 and D = D1∪D2,

where X1
∼= F3 and X2

∼= F1; D1 ⊂ X1 is the disjoint union of the directrix σ1 and a curve

H1 of class 2σ1+6F , and D2 ⊂ X2 is a divisor of class 3σ2+3F ; both D1 and D2 intersect

the fiber X1 ∩ X2 transversely.

Step 1 (Flips): Let (X′,D′) be obtained from (X,D) by flipping the −3 curve σ1 ⊂ X1.

Let (X ′, D′) be the central fiber of (X′→D′)→∆. The surface X ′ is the union of two

components X ′1 ∪ X ′2, where X ′i is related to X i by a diagram

X i ← eX i → X ′i ,

given by Figure 5 where X1 corresponds to T and X2 corresponds to S.

Our next course of action differs substantially depending on the configuration of the

directrices σ1 and σ2.
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6.5.1. Case (a): σ1 and σ2 do not intersect. Let p ∈ X2 be the intersection point of σ1

with X2. Since σ1 and σ2 are disjoint, σ2 does not pass through p.

Step 2a (Contractions): We claim that KX′ +wD′ is nef.

To see this, it suffices to show that the restriction of KX′ + wD′ to each component

of X ′ is nef. Consider the component X ′1 of X ′. Note that X ′1 is obtained from X1
∼= F3

by contracting the (−3) curve σ1. Therefore, X ′1 is of Picard rank 1, with PicQ
�

X ′1
�

generated by F , the image of the fiber of X1. It is easy to calculate that

(KX′ +wD′)
�

�

X ′1
= 6εF.

In particular, KX′+wD′ is ample on X ′1. As a result, it suffices to show that (KX′+wD′)|X ′2
is nef.

Note that σ2 ⊂ X ′2 is a (−1)-curve lying in the smooth locus of X ′2. Let X ′2→ X ′′2 be

the contraction of σ2. It is easy to see that both KX′ |X ′2 and D′ are σ2-trivial. Hence, they

descend to Cartier divisors on X ′′2 , which we denote by K ′′ and D′′, respectively. It now

suffices to show that K ′′ +wD′′ is nef on X ′′2 .

We now describe two extremal curves on X ′′2 . For the first, recall that eX2→ X2 is the

composite of three successive blow-ups, and eX2→ X ′2 contracts the exceptional divisors

introduced in the first two of these three blow-ups. Let E be the image in X ′′2 of the

exceptional divisor of the third blow-up. For the second, note that there is a unique

section τ of X2 through p that is tangent to D2 at p. Let L be the image in X ′′2 of the

proper transform of this section in eX2.

Lemma 6.9.

(1) The curves E and L generate the cone of curves NE
�

X ′′2
�

.

(2) The divisor K ′′ +wD′′ is nef. It is ample if τ is not triply tangent to D2 at p.
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We say that τ is triply tangent to D2 at p if the unique subscheme of D2 of length 3

supported at p is contained in τ. In particular, if τ is a component of D2, then it is triply

tangent to D2 at p.

Proof. It is easy to calculate the intersection table of E and L. If τ is not triply tangent

to D2 at p, we have the table

E L

E −1
3 0

L 0 −1
3

,

and otherwise we have

E L

E −1
3 1

L 1 −2

.

In either case, E and L represent effective classes of negative self-intersection, and

therefore, they are extremal in NE
�

X ′′2
�

. We also see that the classes of L and E are

linearly independent. Since NE
�

X ′′2
�

is two-dimensional, it follows that L and E span it.

Let F be the image in X ′′2 of the class of a fiber of X2. Then we have E · F = 0 and

L · F = 1. A straightforward computation shows that we have

K ′′ ≡ −2F + 2E, and

D′′
�

�

X ′′2
≡ 3F − 3E.

Therefore, we get

(K ′′ +wD′′) · E = ε, , and

(K ′′ +wD′′) · L =











3ε if τ is not triply tangent to D2 at p,

0 otherwise.
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The proof is now complete. �

With the proof of the lemma, we finish the proof that KX′ +wD′ is nef, and hence the

two steps required for the proof of Theorem 6.1 in sub-case (a) of the F3 − F1 case. We

recall that the stable limit (X , D) is obtained as the (KX′ +wD′)-model of (X ′, D′).

Remark 6.10. We record the geometry of (X , D) obtained above. Recall that X is obtained

from X ′ by contracting the following curves: (1) the curve σ2 ⊂ X ′2, and (2) the curve

L ⊂ X ′2 if τ is triply tangent to D2 at p.

If τ is triply tangent to D2 at p, then we see that X is the union of X 1 = P(3,1,1)

and X 2 = P(3,1,2), where the µ3-singularity of X 1 is glued to the A2-singularity of X 2

resulting in the (non-isolated) surface singularity p given by x y = 0 ⊂ 1
3(2,1,1). The

A1-singularity q of X 2 lies away from the double curve. The divisor D lies away from p.

If τ is not a component of D2, then D lies away from q. If τ is a component of D2, then

D passes through q and has a node or a cusp there, depending on whether the residual

curve D2 \τ intersects τ transversely at two points or tangentially at one point.

If τ is not triply tangent to D2 at p, then X is a smoothing of P(3, 1,1)∪ P(3, 1,2) at

the isolated A1-singularity q. As in Remark 6.4, it is easy to check that the isomorphism

type of X does not depend on the divisor D, and X is not a union of toric surfaces along

toric subschemes.

6.5.2. Case (b): σ1 and σ2 intersect. In contrast with case (a), KX′ +wD′ is not nef in

this case, and a further flip is necessary.

Step 1 (a further flip) in case (b): To perform the flip, we must understand the config-

uration of the curves σ1, σ2, and D2. Let p be the point of intersection of σ1 and σ2.

Since σ1 ⊂ D1, we must have p ∈ D2. However, we also have D2 ·σ2 = 0, and therefore,

we conclude that σ2 must be a component of D2. Let D2 = σ2 ∪ H, where H is the

residual curve. Then H ⊂ X2 is a curve of class 2σ2 + 3 f . Since D2 is reduced, H does

not contain σ2 as a component, and since H ·σ2 = 1, it must intersect σ2 transversely
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at a unique point q. Also, since D2 intersects the fiber through p transversely, we have

q 6= p. Let σ′2 be the proper transform of σ2 in X ′2. Then σ′2 is a smooth rational curve

of self-intersection (−4) in the smooth locus of X ′2. Let X′ ¹¹Ë X′′ be the type I flip along

σ′2. Let D′′ be the proper transform of D′ in X′′.

Step 2 (contractions) in case(b): We are now ready for the contraction step. We claim

that KX′′ +wD′′ is nef.

The proof of the nefness of KX′′ +wD′′ closely resembles the proof of nefness in case

(a). As before, nefness on X ′′1 is easy, using that X ′′1 is of Picard rank 1. For X ′′2 , we have

the diagram

F1 = X2
a
←−fX2

b
−→ X ′2

a′
←−fX ′2

b′
−→ X ′′2 ,

where the first transformation X2 ¹¹Ë X ′2 is the result of a type II flip and the second

transformation X ′2 ¹¹Ë X ′′2 is the result of a type I flip. That is, the map a consists of 3

successive blow-ups, b consists of 2 successive blow downs, a′ consists of two successive

blow-ups, and b′ consists of 2 successive blow-downs. We may perform all the blow-ups

first, followed by all the blow-downs, obtaining a sequence

X2
α
←− Ξ

β
−→ X ′′2 .

The exceptional locus of α consists of a chain of rational curves, whose dual graph is

shown below.

fσ2

−5

G1

−2

G2

−1

E1

−1

E2

−2

E3

−2

Here, fσ2 is the proper transform of σ2. By contracting E2, E3, G1 and G2, we obtain X ′2;

by contracting G1, fσ2, E2 and E3, we obtain X ′′2 .

Let X ′′2 → X ′′′2 be the contraction of β(E1). Equivalently, let X ′′′2 be the surface obtained

from Ξ by contracting the chain G1,fσ2, E1, E2, E3. By contracting E1 first, then E2, then

E3, then the chain G1,fσ2, which are now both (−2) curves, we see that X ′′′2 has an A2
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singularity. It is easy to check that the divisors K ′′X ′′ and D′′ are both trivial on β(E1) ⊂ X ′′2 ,

and hence both divisors are pull-backs of Cartier divisors from X ′′′2 , say K ′′′ and D′′′. It

suffices to show that K ′′′ +wD′′′ is nef on X ′′′2 .

Denote by G the image in X ′′′2 of G2. Recall that q ∈ X ′2 is the intersection point of σ′2

and H. Let F be the fiber of X ′2→ P2 through q, and let eF be the proper transform of F

in X ′′′2 . We have the following analogue of Lemma 6.9

Lemma 6.11.

(1) The curves G and eF generate the cone of curves NE
�

X ′′′2

�

.

(2) The divisor (K ′′′ +wD′′′) is nef. It is ample if F is not tangent to H at q.

We say that F is tangent to H at q if the unique subscheme of length 2 of H supported

at q is contained in F . In particular, if H contains F as a component, then F is tangent

to H at q.

Proof. The proof is analogous to the proof of Lemma 6.9. �

With the proof of Lemma 6.11, the proof of nefness of KX′′ +wD′′ is complete, and so

are the two steps necessary for the proof of Theorem 6.1 in case (b). We recall that the

stable limit (X , D) is obtained as the (KX′′ +wD′′)-model of (X ′′, D′′).

Remark 6.12. We observe that the pairs (X , D) obtained in case (b) are the same as the

pairs (X , D) obtained in case (a).

More specifically, consider a pair (X ′, D′) as in case (b). Let (P2, C) be the plane cubic

obtained from (X ′2, D′2) by contracting σ2, and let L ⊂ P2 be the image of the double

curve in X ′2. Let X ′′2 be the blow up of P2 at a general point of L, and let D′′2 be the proper

transform of C in eX2. Construct (X ′′, D′′) by gluing (X ′1, D′1) and (X ′′2 , D′′2 ) in the obvious

way. Then (X ′′, D′′) is pair as in case (a) that leads to the same stable limit (X , D) as in

the pair (X ′, D′).
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Remark 6.13. Observe that if C2 is smooth, then σ1 and σ2 must be disjoint as treated

in § 6.5.1. In the resulting (X , D), the divisor D meets the double curve X 1 ∩ X 2 at 2

distinct points q, r. The divisor q+ r is the hyperelliptic divisor of H1.

To reconstruct (X , D) from (X , D) in this case, we must choose a point t ∈ X 1 ∩ X 2

away from D. The blow up of t on X 2 yields X ′2, and hence X ′ = X ′1 ∪ X ′2. We can then

undo the transformations in the type 2 flip (§ 5.2) to obtain (X , D).

If we do the same procedure starting with t on D, then then the corresponding (X , D)

is a surface with intersecting directrices as in § 6.5.2.

6.6. Summary of stable replacements. Thanks to the proof of Theorem 6.1 in Sec-

tion 6, we obtain an explicit list of stable log quadrics (S, D), namely the points of

X.

We first look at the surfaces S. Table 1 lists the possible surfaces S along with its

non-normal-crossing singularities. If S is reducible, then Table 1 also describes the

double curve on each component. In the table, the divisor H on a weighted projective

space refers to the zero locus of a section of the primitive ample line bundle, and the

divisor F on (coarse space of) a projective bundle denotes the (coarse space of) a fiber.

The last column directs the reader to the relevant section in Section 6 where the stable

reduction is obtained.

Remark 6.14. The surface S described as the coarse space of P(O(4/3, 5/3)⊕O(5/3, 4/3))

has two alternate descriptions (see Remark 6.7). First, it is obtained by gluing BluP(3, 1, 1)

and Blv P(3,1,1) along a P1, where u and v are curvilinear subschemes of length 3.

Second, it is a degenerate (non-normal) toric surface represented by the subdivided

rectangle in Figure 9.

We now look at the divisors D. By Remark 4.3, the curve D is reduced and only admits

Am singularities for m ≤ 4. We also observe that D is a Cartier divisor. In particular,

the log quadrics (S, D) satisfy the index condition. To see that D is Cartier, it suffices
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to examine it locally at the singular points of S. We observe that whenever D passes

through an isolated singularity of S, it is an A1 singularity; D is either nodal or cuspidal

at the singularity, and is cut out by one equation. Whenever D passes through a non-

isolated singularity of S, it does so at the transverse union of two smooth surfaces; the

local picture of (S, D) is

(specK[x , y, t]/(x y), t) .

Thus, D is Cartier. Furthermore, we can check directly that (S, D) satisfies the definition

of a stable log surface for all positive ε < 1/30.

We collect the observations above in the following theorem.

Theorem 6.15. Let (S, D) be a stable log quadric.

(1) The isomorphism class of S is one of the 8 listed in Table 1.

(2) The divisor D is Cartier. In particular, (S, D) satisfies the index condition (Defini-

tion 3.4).

S Singularities of S Double curve Reference
P1 × P1 – – –
P(1,1, 2) p : A1 – § 6.1
Q-Gorenstein smoothing
of the A1 singularity of
P(9,1, 2)

p : 1
9(1,2) – § 6.2 Case (1)

P(9,1, 2) p : 1
9(1,2), q : A1 – § 6.2 Case (2),

(3)
Coarse space of
P(O(4/3,5/3) ⊕
O(5/3, 4/3))

p : (x y = 0) ⊂
1
3(1,2,1), q : (x y =
0) ⊂ 1

3(2,1, 1)

F , F § 6.3

P2 ∪ P2 (x y = 0) ⊂ A3 H, H § 6.4
Q-Gorenstein smoothing
of the A1 singularity of
P(3,1, 2)∪ P(3, 1,1)

p : (x y = 0) ⊂
1
3(2,1, 1)

deformation
of 2H, de-
formation of
H

§ 6.5 (non triply
tangent case)

P(3,1, 2)∪ P(3, 1,1) p : (x y = 0) ⊂
1
3(2,1,1), q : A1 on
P(3,1, 2)

2H, H § 6.5 (triply tan-
gent case)

TABLE 1. Surfaces S that appear in stable log quadrics (S, D)
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(3) (S, D) satisfies Definition 3.1 for all positive ε < 1/30.

As a corollary, we obtain the following.

Corollary 6.16. The stack X is of finite type and proper over K.

Proof. From Theorem 6.15 (3), we get that X is a locally closed substack of the finite

type stack Fε,8 for a positive ε < 1/30 (see Proposition 3.8). The valuative criterion for

properness follows from the valuative criterion for properness for H4,6(1/6+ ε) [12,

Corollary 6.6] and stabilization (Theorem 6.1). �

We take a closer look at the pairs (S, D) where D is smooth. We see that these arise

from a triple cover f : C → P1 where C is smooth non-hyperelliptic curve of genus 4, or

from g : C ∪p P1→ P1 where C is a smooth hyperelliptic curve of genus 4.

Corollary 6.17. For all (S, D) such that D is smooth, we have the following classification

by Table 2:

S D Embedding D ,→ S

P1 × P1 Non-hyperelliptic, Ma-

roni general

Induced by the canonical embedding

P(1,1, 2) Non-hyperelliptic, Ma-

roni special

Induced by the canonical embedding

Q-Gorenstein smoothing

of the A1 singularity of

P(9,1, 2)

Hyperelliptic Determined by a hyperelliptic divisor

p+ q with p 6= q

P(9,1, 2) Hyperelliptic Determined by a hyperelliptic divisor

2p.

TABLE 2. Surfaces S that appear in stable log quadrics (S, D) with D smooth
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7. DEFORMATION THEORY

In this section, we study the Q-Gorenstein deformations of pairs parametrized by X.

Our treatment closely follows [20, § 3]. Since many of the results carry over from [20,

§ 3] our treatment will be brief.

7.1. The Q-Gorenstein cotangent complex. Let A be an affine scheme, and S→ A a

Q-Gorenstein family of surfaces. Denote by p : S→ S the canonical covering stack of

S. By the definition of a Q-Gorenstein family, S→ A is flat. Let LS/A be the cotangent

complex of S→ A [27].

Definition 7.1 (Q-Gorenstein deformation functors). Let M be a quasi-coherent O(A)-

module. Define the O(A)-module T i
QGor(S/A, M) and the OS-module T i

QGor(S/A, M) by

T i
QGor(S/A, M) = Exti(LS/A,OS ⊗A M),

T i
QGor(S/A, M) = p∗Exti(LS/A,OS ⊗A M).

Recall that we also have the usual deformation functors T i(S/A, M) and T i(S/A, M)

defined using the cotangent complex of S → A. The usual functors, in general, differ

from the Q-Gorenstein ones (except for i = 0, see Theorem 7.2).

The Q-Gorenstein deformation functors play the expected role in classifying Q-

Gorenstein deformations and obstructions. To make this precise, let A → A′ be an

infinitesimal extension of A. A Q-Gorenstein deformation of S → A over A′ is a flat

morphism S′→ A′ along with an isomorphism S′ ×A′ A∼= S.

Let A→ A′ be a square zero extension of A by a quasi-coherent O(A)-module M . Recall

that this means we have a surjection O(A′)→ O(A) with kernel M and M2 = 0.

Theorem 7.2. Let S→ A be a Q-Gorenstein family of surfaces and let A→ A′ be a square

zero extension by an A-module M.
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(1) There is a canonical element o(S/A, A′) ∈ T 2
QGor(S/A, M) which vanishes if and

only if there exists of Q-Gorenstein deformation of S/A over A′.

(2) If o(S/A, A′) = 0, then the set of isomorphism classes of Q-Gorenstein deformations

of S/A over A′ is an affine space under T 1
QGor(S/A, M).

(3) If S′/A′ is a Q-Gorenstein deformation of S/A, then the group of automorphisms

of S′ over A′ that restrict to the identity on S is isomorphic to T 0
QGor(S/A, M).

Furthermore, we have an isomorphism

(7.1) T0
QGor(S/A, M)∼= T0(S/A, M).

Proof. The isomorphism (7.1) is from [20, Lemma 3.8]. The rest of the assertions are

from [20, Theorem 3.9]. The main point in the proof is an equivalence between Q-

Gorenstein deformations of S and deformations of S. Having established this equivalence,

the theorem follows from the properties of the cotangent complex [27, Theorem 1.7]. �

7.2. Deformations of pairs. Having discussed deformations of surfaces, we turn to

deformations of pairs. The upshot of this discussion is Proposition 7.5, which says that

the deformations of pairs are no more challenging than the deformations of the ambient

surfaces.

Let (S, D) be a stable log quadric, that is, a K-point of X. The Q-Gorenstein cotangent

complex of a surface S is determined by the canonical covering stack p : S → S. We

collect the properties of S that we require for further analysis. Set DS = D×S S.

Lemma 7.3. The stack S has lci singularities.

Proof. Recall that S → S is an isomorphism over the Gorenstein locus of in S. From

Theorem 6.15, we see that the only non-Gorenstein singularities on S are 1
3(1, 1), 1

9(1, 2),

and (x y = 0) ⊂ 1
3(2,1,1), and furthermore, all other singularities of S are lci. The
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canonical covering stacks of the three non-Gorenstein singularities are

�

A2/µ3

�

→
1
3
(1, 1),

�

specK[x , y, z]/(x y − z3)/µ3

�

→
1
9
(1, 1), and

[specK[x , y, z]/(x y)/µ3]→ (x y = 0) ⊂
1
3
(2,1, 1).

All three stacks on the left have lci (in fact, hypersurface) singularities. The first assertion

follows. �

Lemma 7.4. Let (S, D) be a stable log quadric. Then H1(OS(D)) = 0.

Proof. The assertion is analogous to [20, Lemma 3.14]. The same proof goes through as

long as we check that −(KS−D) is ample and the normalization Sν is log terminal. From

Theorem 6.15, we know that D ∼= −3/2KS and KS + (2/3+ ε)D is ample. It follows that

both −KS and D are ample, and hence so is −(KS −D). From looking at the singularities

of S in Theorem 6.15, we see that Sν is log terminal. �

Proposition 7.5. Let A be an affine scheme and (S, D) an object of X(A). Let A→ A′ be

an infinitesimal extension and S′ → A′ a Q-Gorenstein deformation of S/A. Then there

exists a Q-Gorenstein deformation (S′, D′) over A′ of (S, D). That is, there exists an object

of X(A′) restricting to (S, D) over A.

Proof. The assertion is analogous to [20, Theorem 3.12]. The proof depends on two

lemmas: [20, Lemma 3.13] and [20, Lemma 3.14]. The analogue of the first is Theo-

rem 6.15(2) and of the second is Lemma 7.4. �

We now have all the tools to show that the Q-Gorenstein deformations of stable log

quadrics are unobstructed.

Theorem 7.6. X over K is a smooth stack.
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Proof. We use the infinitesimal lifting criterion for smoothness. Let (S, D) be a stable log

quadric. Let A be the spectrum of an Artin local K-algebra, (S ,D) be a Q-Gorenstein

deformation of (S, D) over A, and A→ A′ an infinitesimal extension. We must show that

(S ,D) extends to a deformation (S ′,D ′) over A′.

By induction on the length, it suffices to prove the statement when the kernel

of O(A′) → O(A) is K. By Proposition 7.5, it suffices to show the existence of S ′.

By Theorem 7.2, it suffices to show that T 2
QGor(S /A, k) = 0. Note that we have

T 2
QGor(S /A, k) = T 2

QGor(S/k, k). Henceforth, we abbreviate T i
QGor(S/k, k) by T i

QGor(S)

and use similar abbreviations for T i and T i.

To show that T 2
QGor = 0, it suffices to show by the Leray spectral sequence that

H0
�

T2
QGor

�

, H1
�

T1
QGor

�

, and H2
�

T0
QGor

�

are all 0. We do this one by one.

Let p : S→ S be the canonical covering stack. By Lemma 7.3, we know that S is lci.

Therefore, T2(S) = 0, and hence T2
QGor(S) = 0.

The sheaf T1
QGor(S) is supported on the singular locus of S. If the singular locus has

dimension less than one, then H1(T1
QGor(S)) = 0. From Theorem 6.15, we see that the

only cases where the singular locus of S has dimension ≥ 1 have S = S1 ∪B S2, where S1

and S2 are irreducible and meet along a curve B ∼= P1. More precisely, the local structure

of S is either (x y = 0) ⊂ A3 or its quotient by a µr where ζ ∈ µr acts by

ζ · (x , y, z) 7→ (ζx ,ζ−1 y,ζaz),

with gcd(a, r) = 1. Denote by Bi the restriction of B to Si for i = 1,2. By [22, Proposi-

tion 3.6], we get that in this case

T1
QGor = OS1

(B1)
�

�

B ⊗OS2
(B2)

�

�

B.

Thus, T1
QGor is a line bundle on B ∼= P1 of degree B2

1 + B2
2. In the surfaces listed in

Theorem 6.15, we see that B2
1 + B2

2 is either 0, 1, or 2. We conclude that H1(T1
QGor) = 0.
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By Theorem 7.2 equation (7.1), the sheaf T0
QGor(S) is isomorphic to T0(S). First,

assume that S is reducible with the notation as above. Then [20, Lem 9.4] applies to S

as its proof is valid whenever S is slc, Si only has quotient singularities, S is not normal

crossing along at most two points of B, the divisor KSi
+ Bi anti-ample, and h1(OS̃i

) = 0

where S̃i → Si are the minimal resolutions. Of these, the first three conditions follow

from Theorem 6.15. The anti-ampleness of KSi
+ Bi can be seen by noting that they

are restrictions of the anti-ample Q-divisor KS to Si. Finally, since each Si is rational

by Theorem 6.15, we have h1(OS̃i
) = 0. This proves that H2(T0

S) = 0 whenever S is

reducible.

When S is irreducible, consider the minimal resolution c : S̃ → S. Since S only has

quotient singularities by Theorem 6.15, the surface S̃ is rational as well by [30, Prop

5.15]. Therefore, we have c∗OS̃ = OS and Ric∗OS̃ = 0 for any i > 0. Furthermore, since S̃

is rational, we have q(S) := h1(OS) = h1(c∗OS̃) = 0 and pg(S) := h2(OS) = h2(c∗OS̃) = 0.

Since −KS is ample and effective as well, [32, Prop III.5.3] implies that H2(T0
S) = 0.

The proof of Theorem 7.6 is thus complete. �
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8. GEOMETRY

In this section, we take a closer look at the geometry of X, and compare it with related

moduli spaces.

8.1. Comparison of X with the spaces of weighted admissible covers H
3

4(1/6+ ε).

Recall that H
3

4(1/6 + ε) is the moduli space of weighted admissible covers where

up to 5 branch points are allowed to coincide. Let U ⊂ H
3

4(1/6 + ε) be the open

substack parametrizing φ : C → P where P ∼= P1, the curve C is smooth, and the

Tschirnhausen bundle Eφ of φ is O(3)⊕O(3). We have a morphism Φ: U → X given by

the transformation

(φ : C → P) 7→ (PEφ, C).

Theorem 8.1. The map Φ extends to a morphism of stacks Φ: H
3

4(1/6+ ε)→ X.

Since H
3

4(1/6+ ε) is proper and X is separated, the map Φ is also proper.

For the proof, we need extension lemmas for morphisms of stacks, extending some

well-known results for schemes. Let X and Y be separated Deligne–Mumford stacks of

finite type over a field K. Let U ⊂ X be a dense open substack.

Lemma 8.2. Assume that X is normal. If Φ1,Φ2 : X → Y are two morphisms whose

restrictions to U are equal (2-isomorphic), then Φ1 and Φ2 are equal (2-isomorphic).

Proof. We have the following diagram where the square is a pull-back

Y

Y× YXU

Z

(Φ1,Φ2)
∆

Since Y is a separated Deligne–Mumford stack, the diagonal map ∆ is representable,

proper, and unramified. Therefore, so is the pullback Z→ X. Since Φ1 and Φ2 agree

on U, the inclusion U→ X lifts to U→ Z. Since Z→ X is unramified and U→ X is an
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open immersion, so is the lift U→ Z. Let U ⊂ Z be the closure of U and U
ν
→ U its

normalization. Since X is normal, Zariski’s main theorem implies that U
ν
→ X is an

isomorphism. Hence the map Z→ X admits a section X→ Z. In other words, the map

(Φ1,Φ2): X→ Y× Y factors through the diagonal Y→ Y× Y. �

Example 8.3. In Lemma 8.2, we can drop the normality assumption on X if Y is an

algebraic space, but not otherwise. An example of distinct maps that agree on a dense

open substack can be constructed using twisted curves (see [1, Proposition 7.1.1]). Let

X be the stack

X= [specC[x , y]/x y/µn] ,

where ζ ∈ µn acts by (x , y) 7→ (ζx ,ζ−1 y). Every ζ ∈ µn defines an automorphism of

tζ : X→ X given by (x , y) 7→ (x ,ζy). The map tζ is the identity map on the complement

of the node of X, but not the identity map on X if ζ 6= 1.

The map Φ: U→ Y induces a map |Φ|: |U| → |Y| on the set of points. Let φ : |X| → |Y|

be an extension of |Φ|. We say that φ is continuous in one-parameter families if for every

DVR∆ and a map i : ∆→ X that sends the generic pointη of∆ toU, the mapΦ◦i : η→ Y

extends to a map ∆→ Y and agrees with the map φ on the special point.

Lemma 8.4. Suppose X is smooth, and Φ: U→ Y is a morphism. Let φ : |X| → |Y| be an

extension of |Φ|: |U| → |Y|. If φ is continuous in one-parameter families, then it is induced

by a morphism Φ: X→ Y that extends Φ: U→ Y.

By Lemma 8.2, the extension is unique.

Proof. Consider the map (id,Φ): U→ X×Y. Let Z ⊂ X×Y be the scheme theoretic image

of U (see [40, Tag 0CMH]), and let let Zν→ Z be the normalization. By construction,

the map Z → X is an isomorphism over U [40, Tag 0CPW]. Since U is smooth (and

hence normal), the map Zν→ X is also an isomorphism over U. Our aim is to show that

Zν→ X is in fact an isomorphism.
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Let Zν → X be the morphism on coarse spaces induced by Zν → X. Let (x , y) ∈

|X| × |Y| be a point from Zν. Since the image of U is dense in Zν, there exists a DVR

∆ with a map ∆ → Zν whose generic point maps into the image of U and whose

special point maps to (x , y). The continuity of φ in one-parameter families implies that

y = φ(x). As a result, Zν→ X is a bijection on points. As Zν and X are normal spaces,

Zν→ X must be an isomorphism.

By hypothesis, for every DVR ∆, a map ∆→ X that sends the generic point to U lifts

to a map ∆→ Y, and hence to a map ∆→ Zν. This implies that Zν→ X is unramified

in codimension 1. It follows by the same arguments as in [17, Corollary 6] that Zν→ X

is an isomorphism. Since [17, Corollary 6] is stated with slightly stronger hypotheses,

we recall the proof. Let V be a scheme and V → X an étale morphism. Set W = Zν×X V

and U = U×X V . Let W→W be the coarse space. The map W → V is an isomorphism

over the dense open subset U ⊂ V , and is a quasi-finite map between normal spaces. By

Zariski’s main theorem, it is an isomorphism. Furthermore, as W→ V is unramified in

codimension 1, so is W→W . Since W is normal and W is smooth, purity of the branch

locus [40, Tag 0BMB] implies that W → W is étale. As W → V is an isomorphism

over U , we see that W contains a copy of U as a dense open substack. In particular,

W has trivial generic stabilizers. By [17, Lemma 4], we conclude that W→ W is an

isomorphism. Since both W → W and W → V are isomorphisms, their composite

W→ V is an isomorphism. We have proved that Zν→ X is an isomorphism étale locally

on X. We conclude that Zν→ X is an isomorphism.

The composite of the inverse of Zν → X, the map Zν → X× Y, and the projection

onto Y gives the required extension Φ: X→ Y. �

Proof of Theorem 8.1. Define a map φ : |H
3

4(1/6+ ε)| → |X|, consistent with the map

induced by Φ on U as follows. Let k be an algebraically closed field and a : spec k→

H
3

4(1/6 + ε) a map. Let ∆ be a DVR with residue field k and α: ∆ → H
3

4(1/6 + ε)

a map that restricts to a at the special point and maps the generic point η to U . By

91



Theorem 6.1, there exists an extension β : ∆→ X of Φ ◦α|η. Let b : spec k→ X be the

central point of the extension. Set φ(a) = b. Theorem 6.1 guarantees that b depends

only on a, and not on α; so the map φ is well-defined. Theorem 6.1 also guarantees that

φ is continuous in one-parameter families. Since H
3

4(1/6+ ε) is smooth, Lemma 8.4

applies and yields the desired extension. �

8.2. The boundary locus of X. Let U ⊂ X be the open subset that parametrizes (S, D)

where S ∼= P1×P1 and D ⊂ S is a smooth curve of degree (3, 3). The boundary of X refers

to the complement X \ U. Let T ⊂H
3

4(1/6+ ε) be the open subset that parametrizes

f : C → P where P ∼= P1, the curve C is smooth, and the Tschirnhausen bundle of f is

O(3)⊕O(3). We see that T= Φ−1(U). To understand the boundary of X, we are led to

understanding H
3

4(1/6+ ε) \T.

We define some closed subsets of H
3

4(1/6+ ε) \T. Before we do so, let us extend the

notion of the Maroni invariant of a triple cover of P1 to a triple cover of P = P1( a
p

p).

Recall that vector bundles on P are direct sums of line bundles, and the line bundles are

given by O(n) for n ∈ 1
aZ, where the generator O(−1/a) is the ideal sheaf of the unique

stacky point p [33].

Definition 8.5 (Maroni invariant). Let P = P1( a
p

p), and let f : C → P be a representable,

finite, flat morphism of degree 3. Suppose f∗OC/OP
∼= O(−m) ⊕ O(−n) for some

m, n ∈ 1
aZ. Then the Maroni invariant of f , denoted by M( f ), is the difference |m− n|.

We now define various boundary loci of H
3

4(1/6+ ε) based on the Maroni invariant

and the singularities.
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Definition 8.6 (Tschirnhausen loci). Let a, b, c be positive rational numbers. Define the

following closed subsets of H
3

4(1/6+ ε).

Y0 := {[ f : C → P] | P ∼= P1, M( f ) = 0, C ′ is singular}

Ya := {[ f : C → P] | P ∼= P1, M( f ) = a}

Yb,c := {[ f : C → P] | P is rational chain of length 2, M( f ) on each component is b, c}

Define Za, Zb,c to be the image of Ya, Yb,c under Φ, respectively.

Since Φ is a proper map, Za and Zb,c are closed subsets of X. We have seen in Section 6

that the corresponding cases there describe general members of Za and Zb,c for suitable

a, b, c. By construction, the various Za and Zb,c cover the boundary of X as a, b, c vary.

Let us identify a, b, c that lead to non-empty loci in H
3

4(1/6+ε). Let us start with Ya,

keeping in mind that a must be even. Taking a = 2 yields the classical Maroni divisor

Y2. Taking a = 4 yields the hyperelliptic divisor Y4. A generic point of Y4 corresponds

to f : C ∪ P1→ P1, where C is a smooth hyperelliptic curve of genus 4 attached to P1

nodally at one point. For a > 4, we have Ya =∅.

Let us now consider Yb,c. First, observe that the node on the rational chain P of

length 2 has automorphism group of order 1 or 3. In the case of trivial automorphism

group, the non-empty cases are Y1,1, Y1,3, and Y3,3. A generic point of Y1,1 corresponds

to f : C1 ∪ C2→ P1 ∪ P2 where each Ci is a smooth curve of genus 1. A generic point of

Y1,3 corresponds to f : C1 ∪ C2 → P1 ∪ P2 where C1 is a smooth curve of genus 1 and

C2 is the disjoint union of a smooth curve of genus 2 and P1. A generic point of Y3,3

corresponds to f : C1 ∪ C2→ P1 ∪ P2 where each Ci is a disjoint union of a smooth curve

of genus 2 and P1; they are attached so that the union C1 ∪ C2 is connected. In the case

of an automorphism group of order 3, the only non-empty case is Y1/3,1/3. A generic

point of Y1/3,1/3 corresponds to f : C1∪C2→ P1∪ P2 where Ci is smooth of genus 2, and
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on the level of coarse spaces, Ci → Pi is a triple cover totally ramified over the node

point on Pi.

From the discussion above, we see that the non-empty Ya and Yb,c, namely Y0, Y2,

Y4, Y1,1, Y1,3, Y3,3, and Y1/3,1/3, are all irreducible of codimension 1 in H
3

4(1/6+ ε).

Set

I = {0, 2,4, (1, 1), (1,3), (3, 3), (1/3,1/3)}.

This is the set of possible subscripts of the Y’s.

Proposition 8.7. For all i ∈ I except i = (1, 1) and i = (1, 3), the loci Zi are of codimension

1 in X. The locus Z1,1 is of codimension 3, and Z1,3 of codimension 2.

Proof. For all i ∈ I , the Yi are irreducible, and hence so are the Zi. Notice that Z0 is

of codimension one, since having a singular point for curves of class (3,3) in P1 × P1

induces a codimension 1 condition.

For the rest, we find the dimension of the general fiber of Φ on Yi. We first treat

the cases of irreducible S. Given a generic (S, D) ∈ Z2, we obtain the Tschirnhausen

embedding D ⊂ F2 by taking the minimal resolution of the A1 singularity of S. Similarly,

for a general (S, D) ∈ Z4, we can obtain the Tschirnhausen embedding D ⊂ F4 by

undoing the transformation described in § 6.2. To do so, we first take the minimal

resolution of S and contract one of the two −1 curves on the resolution. Therefore, we

get that Z2 and Z4 are of codimension 1.

We now consider the cases of reducible S. By considering the two components

separately, we can reconstruct the Tschirnhausen embedding from a general (S, D) in

Z1/3,1/3 and Z3,3, up to finitely many choices. Therefore, we get that Z1/3,1/3 and Z3,3 are

of codimension 1.

Let us now look at the two exceptional cases. For a general (S, D) ∈ Z1,1, we have

S = S1∪S2 where both components are isomorphic to P2. To construct the Tschirnhausen

surface F1 ∪ F1 from S, we need to choose two points p, q ∈ D := S1 ∩ S2 to blow up

94



on S1 and S2 respectively (the curve in F1 ∪ F1 is simply the pre-image of D). Since p

and q can be any points in D ∼= P1, a general fiber of Φ: Y1,1→ Z1,1 has dimension 2.

Therefore, Z1,1 is of codimension 3.

For the a general (S, D) ∈ Z1,3, we have S = S1 ∪ S2 where S1
∼= P2 and S2 is the cone

over twisted cubic. To construct the Tschirnhausen surface F1 ∪ F3, we must choose

a point on the double curve of S1 ∪ S2 to blow up on S1 (see Remark 6.13). Hence, a

general fiber of Φ: Y1,3→ Z1,3 has dimension 1. Therefore, Z1,3 is of codimension 2. �

Although the indices i ∈ I correspond bijectively with the divisors Yi, when we pass

to the Zi, we have one coincidence.

Proposition 8.8. For indices i 6= j in I, we have Zi 6= Z j Nonempty Za’s and Zb,c ’s are

distinct except Z3,3 = Z 1
3 , 1

3
in X.

Proof. For i 6= j in I \{(3, 3), (1/3, 1/3)}, the surfaces parametrized by the general points

of Zi and Z j are non-isomorphic, as they have non-isomorphic singularities. That Z3,3 is

the same as Z(1/3,1/3) follows from Proposition 6.8. �

Proposition 8.8 shows that boundary of X has 4 divisorial components, namely Z0,

Z2, Z4 and Z3,3. The next proposition shows that they cover the entire boundary.

Proposition 8.9. Z1,1 is contained in Z2 and Z1,3 is contained in Z4. Therefore, the

boundary of X is divisorial.

Proof. Let us first consider the case of Z2 and Z1,1. Recall that a general (S, D) ∈ Z1,1

arises as the stabilization of a Tschirnhausen pair (F1 ∪ F1, D), and a general (S, D)

in Z2 as the stabilization of a Tschirnhausen pair (F2, D). We construct a family of

Tschirnhausen pairs with generic fiber F2 degenerating to F1 ∪ F1.

Take a one parameter family π: B → ∆ of smooth P1’s degenerating to a nodal

rational curve P1∪p P2 over a DVR∆. Call 0 ∈∆ the special point and η ∈∆ the generic

point. Then Bη ∼= P1 and B0 = P1∪p P2. Choose sections si :∆→ B of π for i = 1, 2 with

95



si(0) ∈ Pi \ {p} for i = 1,2. Consider the vector bundle

E = O(s1 + s2)⊕O(2s1 + 2s2)

over B. Notice that the generic fiber Eη is O(2) ⊕ O(4) and the special fiber E0 is

O(1, 1)⊕O(2, 2); here O(a, b) denotes the line bundle on P1 ∪ P2 of degree a on P1 and

degree b on P2. Let D ⊂ PE be a general divisor of class π∗O(3)⊗π∗ det E∨. We can

check that

h0(π∗O(3)⊗π∗ det E∨|η) = h0(π∗O(3)⊗π∗ det E∨|0),

so the divisor D0 ⊂ P(E0) is general in its linear series. The covering D→ B over ∆

gives a map µ: ∆→H
3

4(1/6+ ε). The composite Φ ◦ µ: ∆→ X maps 0 to a general

point of Z1,1 and η to a point of Z2. It follows that Z1,1 is contained in Z2.

The case of Z1,3 and Z4 is proved similarly by taking E = O(s1)⊕O(2s1 + 3s2). �

8.3. Comparison of X with M4. In this section, we describe the relationship between

X and the moduli stack M4 of smooth curves of genus 4.

Denote by M4 the (non-separated) moduli stack of all curves (proper, connected,

reduced schemes of dimension 1) of arithmetic genus 4. We have a forgetful map

X → M4 that sends (S, D) to D. Let X0 ⊂ X be the open subset where D is smooth.

Corollary 6.17 describes the surfaces appearing on X0. The forgetful map restricts to a

map

F : X0→M4.

Proposition 8.10. F is (1) representable, (2) proper, and (3) restricts to an isomorphism

F : X0 \ Z4→M4 \H4,

where H4 ⊂M4 is the hyperelliptic locus.
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Proof. (1) By [4, Lemma 4.4.3], it suffices to show that F : X0(K)→M4(K) is a faithful

map of groupoids. In other words, given any (S, C) ∈ X0(K), we need to show that any

automorphism f of (S, C) restricting to identity on C is the identity on S. We break this

into two cases.

In the first case, suppose C is not hyperelliptic. Then C has a canonical embedding

C ⊂ P3. The linear series |KS + C | gives an embedding of S in P3 as a quadric surface.

So S is realized as the unique quadric surface in P3 containing C . Note that every

automorphism of S extends uniquely to an automorphism of P3. That is, we have an

injection

Aut(S) ⊂ PGL4(K).

Likewise, every automorphism of C extends uniquely to an automorphism of P3, so we

also have an injection

Aut(C) ⊂ PGL4(K).

It follows that every automorphism of S that is the identity on C is the identity on S.

In the second case, suppose C is hyperelliptic. Let eS → S be the minimal desingu-

larization of S. Recall that S has a 1
9(1,2) singularity and possibly an additional A1

singularity. The map eS→ S resolves the 1
9(1, 2) singularity to produce a chain of rational

curves of self-intersection (−5,−2). We have a unique fibration eS→ P1 whose generic

fiber is P1. The −5 curve σ obtained in the resolution is a section of this fibration. An

automorphism f of S induces an automorphism ef of eS. Note that ef must preserve the

fibration eS → P1 and the section σ. If f also fixes C , then ef fixes three points in a

generic fiber of eS→ P1, namely the point of σ, and the two points of C . It follows that

f is the identity on S.

(2) Since X0 is separated and of finite type, so is F . For properness, we check the

valuative criterion. Let π: C →∆ be a smooth proper curve of genus 4. We may assume

that the generic fiber Cη is non-hyperelliptic and Maroni general. Let (Sη, Cη) be an
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object of X over the generic point η. We must extend it to an object of X over ∆ that

gives C →∆ under the map F .

Since Cη is a smooth, non-hyperelliptic curve, Sη is the unique quadric surface con-

taining Cη in its canonical embedding. Possibly after a base change on ∆, we have a

line bundle L on C such that for all t ∈ ∆, we have deg Lt = 3 and h0(Lt) = 2. If the

central fiber C0 is non-hyperelliptic, then L0 is base-point free. In that case, we have a

finite, flat, degree 3 map

f : C → P1
∆
= P(π∗L).

If C0 is hyperelliptic, then L0 is given by the hyperelliptic line bundle twisted by O(p) for

some p ∈ C0 and has a base point at p. After finitely many blow-ups and contractions of

(−2) curves centered on p, we obtain a family π′ : C ′→∆ and a finite, flat, degree 3

map

f : C ′→ P1
∆
= P(π∗L).

The central fiber of C ′→∆ is the nodal union of C0 and P1 at p. In either case, f yields

a map ∆→H
3

4(1/6+ε). Its composition with Φ: H
3

4(1/6+ε)→ X gives a map ∆→ X.

From the description of stabilization for the central fiber of f (see § 6.1 and § 6.2), we

see that ∆ maps to X0 and provides the necessary extension of η→ X given by (Sη, Cη).

(3) Let p : specK→M4 \H4 be a point given by a smooth, non-hyperelliptic curve

C . The fiber of

(8.1) F : X0 \ Z4→M4 \H4

over p is a unique point, represented by the isomorphism class of (S, C) where S is the

unique quadric surface containing the canonical image of C . By Zariski’s main theorem,

we conclude that (8.1) is an isomorphism. �

Using Proposition 8.10, we immediately deduce the following.
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Theorem 8.11. The map F induces an isomorphism of stacks

X0
∼
−→ BlH4

M4.

Proof. It suffices to check the statement étale locally on M4. So let U be a scheme and

U →M4 an étale map. Let H ⊂ U be the pre-image of H4. Likewise, let X → U be the

pullback of X0→M4 and Z ⊂ X the pre-image of Z4. Note that U and H are smooth.

We may assume that they are also connected (hence irreducible).

Let p be a point of H whose image in H4 corresponds to the hyperelliptic curve C . By

Corollary 6.17, the (set-theoretic) fiber of Z → H over p is P1, given by the elements of

the hyperelliptic linear series on C . Since H is irreducible, and the fibers of Z → H are

irreducible of the same dimension, Z is also irreducible. We also know that X → U is an

isomorphism over the complement of H. Since H ⊂ U is smooth, X is smooth, and Z is

irreducible, X → U is the blow-up at H by [38, Corollary]. �

Using Proposition 8.10, we also obtain the Picard group of X.

Proposition 8.12. The rational Picard group PicQ(X) of X is of rank 4, and is generated

by the classes of the four boundary divisors.

Proof. We have a surjective map

PicQ(X)→ PicQ(X0)

given by pull-back, whose kernel is generated by the irreducible components of X \X0,

namely Z0 and Z3,3. Since PicQ(M4) = 〈λ〉 and H4 ⊂M4 is of codimension 2, we have

PicQ(X0 \ Z4) = PicQ(M4 \H4) = PicQ(M4) =Q〈λ〉.
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The image of Z2 in M4 is the Maroni divisor, which is linearly equivalent to a rational

multiple of λ (precisely, Z2 ∼ 17λ by [39, Theorem IV]). Therefore, we get

PicQ
�

X0 \ (Z2 ∪ Z4)
�

= 0.

Hence, PicQ(X) is generated by Z0, Z2, Z4, and Z3,3.

We now show that the 4 boundary divisors are linearly independent by test-curve

calculations. Take 3 curves C1, C2, C3 in X as follows:

C1 := a pencil of (3, 3) curves in P1 × P1

C2 := a curve meeting Z3,3 in X

C3 := a curve in the exceptional locus of BlH4
M4→M4

The intersection matrix of C1, C2, C3 and Z0,Z3,3,Z4 is as follows, where ∗ denotes a

non-zero number and ? an unknown number.

Z0 Z3,3 Z4

C1 34 0 0

C2 ? ∗ ?

C3 0 0 −1

Since this matrix is invertible, we conclude that Z0,Z3,3,Z4 are linearly independent.

It remains to show that Z2 is linearly independent of these three. If Z2 were a linear

combination of Z0, Z3,3, and Z4, then its restriction to X0 would be a rational multiple

of Z4. But Z2 and Z4 are clearly linearly independent on X0 = BlH4
M4. Indeed, Z4 is

the exceptional divisor of the blow up and Z2 is the pullback of a non-trivial divisor on

M4. �
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Theorem 8.11 implies that X is a compactification of BlH4
M4. We may ask whether X

is the blow up of the closure of H4 in M4. The answer is “No.” In fact, we can see that

F does not even extend to a morphism from X to M4.

To see this, observe that there is a stable log quadric (P1 × P1, C) where C is an

irreducible curve with a cuspidal singularity. Let p ∈ X be the point represented by

this stable log quadric. Then the rational map F : X ¹¹Ë M4 is undefined at p. Let

C →∆ be a one parameter family of (3,3) curves on P1 × P1 with central fiber C and

smooth general fiber. The stable limit of such a family in M4 is Cν ∪ E, where Cν is the

normalization of C and E is an elliptic curve attached nodally to Cν at the pre-image

of the cusp. Furthermore, it is easy to see that we obtain all possible elliptic curves E

by making different choices of the one parameter family ∆. Hence, it is impossible to

define F at p.

The next natural question is whether there is a map from X to an existing alternative

compactification of M4? Let us consider the alternative compactifications of M4 con-

structed in the Hassett–Keel program [15], which we now recall. Let α ∈ [0, 1] be such

that KM4
+αδ is effective (here δ is the class of the boundary divisor of M4), we have

the space

M4(α) = Proj
⊕

m≥0

H0
�

M4, m(KM4
+αδ)

�

.

We restrict ourselves to α > 2/3− ε for a small enough ε. For such α, the spaces M4(α)

can be described as the good moduli spaces of various open substacks of the stack of all

curves M4 [7]. The answer, however, still turns out to be negative.

Proposition 8.13. For any value of α ∈ (2/3− ε, 1]∩Q, the map F does not extend to a

morphism from X to M4(α).

Proof. There is a stable log quadric (P1 × P1, C) where C is irreducible with an A4

(rhamphoid cusp) singularity. Let p be the point of X corresponding to (P1×P1, C). But

M4(α) contains a point representing a curve with a rhamphoid cusp only if α ≤ 2/3.
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We conclude that for α > 2/3, the rational map F : X ¹¹Ë M4(α) must be undefined at p.

Indeed, for α > 2/3, the limit in M4(α) of a one parameter family of generically smooth

(3, 3) on P1 × P1 curves limiting to C is Cν ∪ T , where Cν is the normalization of C and

T is a genus 2 curve attached to Cν at the pre-image of the rhamphoid cusp on C and at

a Weierstrass point of T [23, 6.2.2]. Furthermore, we can see that multiple Weierstrass

genus 2 tails T arise (in fact, all of them do) by different choices of the family. So F

cannot be defined at p.

It remains to show that F does not extend to a map to M4(α) for 2/3− ε < α≤ 2/3.

The culprit here is the locus Z1,3. Let p ∈ X be a generic point of Z1,3. Recall that the

curve in the pair corresponding to p is a genus 2 curve with an elliptic bridge. We will

show that the elliptic bridge causes F : X ¹¹Ë M4(α) to be undefined at p. On one hand,

p lies in the closure of the hyperelliptic locus Z4 by Proposition 8.9. Therefore, if F is

defined at p, then F(p) must lie in the closure of the hyperelliptic locus in M4(α). On

the other hand, we construct a one parameter family ∆→ X with central fiber p whose

stable limit in M4(α) does not lie in the closure of the hyperelliptic locus. This will show

that F cannot be defined at p.

To construct ∆, start with a family P→∆ whose generic fiber Pη is P1, whose special

fiber P0 is a nodal rational chain of length 2, and whose total space P is non-singular.

Take a vector bundle E on P such that Eη ∼= O(3)⊕O(3) and E0
∼= O(1, 0)⊕O(2, 3). Let

C ⊂ PE be a general divisor in the linear series OPE(3)⊗detE∨. Observe that the central

fiber PE0 is F1 ∪ F3. The divisor C0 ∩ F1 is the pre-image of a general plane cubic and

is disjoint from the directrix. The divisor C0 ∩ F3 is the disjoint union of the directrix

and a hyperelliptic curve H of genus 2. The curve H meets the elliptic curve nodally

at two points, say q and r, which are hyperelliptic conjugate. We have seen that the

stabilization of the central fiber (PE0,C0) is a point of Z1,3 (§ 6.5).

We now find the stable limit of the family C → ∆ in M4(α). To do so, we must

contract the rational tail and the elliptic bridge of C0. It will be useful to achieve this
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contraction in the family of surfaces PE → ∆. Let X1 → PE be the blow up of the

directrix σ ⊂ F1 ⊂ PE0. From the sequence

0→ O(−1) = Nσ/F1
→ Nσ/X→ NF1/X

�

�

σ
= O(−1)→ 0

we see that the normal bundle of σ in PE is O(−1)⊕O(−1). Hence the exceptional

divisor of the blow up is P1 × P1 and it is disjoint from the proper transform of C. The

proper transform of F1 ⊂ PE0 is a copy of F1. The proper transform of F3 ⊂ PE0 is

Blp F3 where p = σ∩ F3. We contract the exceptional divisor P1 × P1 ⊂ X1 in the other

direction, namely along the fibers opposite to the fibers of the projection P1 × P1→ σ,

obtaining a threefold X2 (this is a contraction of type Theorem 2.13(1)). The central

fiber of X2 → ∆ is P2 ∩ Blp F3. We next contract the P2 in the central fiber to obtain

X3 (this is a contraction of type Theorem 2.13(2)). The central fiber of X3→∆ is F2.

On this F2, the central fiber of the proper transform of C is a divisor of class −3/2K.

More precisely, it is the union of the directrix s and a curve of class 2s+ 6 f with a node

on the directrix. Finally, let X3→ X4 be the small contraction of s (obtained by taking

the anti-canonical model). The central fiber of X4→∆ is the cone over a plane conic,

namely a singular quadric surface in P3. Let C4 ⊂ X4 be the proper transform of C. The

central fiber C of C4→∆ is a tacnodal curve whose normalization is H; the pre-image

of the tacnode is the hyperelliptic conjugate pair {q, r}. Most importantly, however, we

have C ⊂Q where Q ⊂ P3 is a quadric surface. As a result, we see that C has a canonical

embedding in P3. Therefore, it is not in the closure of the hyperelliptic locus. This

observation completes the proof of the assertion that F cannot be defined at a generic

point of Z1,3. �

Denote by X the coarse space of X. Proposition 8.13 says that the relationship between

X and the known modular compactifications of M4 is complicated.

We close with some questions.
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Question 8.14. How does the birational map X ¹¹Ë M4(α) decompose into more elemen-

tary birational transformations (divisorial contractions and flips)? Is X a log canonical

model of BlH4
M4?

Recall that X can be interpreted as the KSBA compactification of weighted pairs (S, wC)

with weight w = 2/3+ε for sufficiently small ε < 1
30 . An answer to the following question

will be interesting in itself, and also potentially useful for Question 8.14.

Question 8.15. How does the KSBA compactification change as the weight w varies in

(2/3,1]?

104



REFERENCES

[1] D. Abramovich, A. Corti, and A. Vistoli. Twisted bundles and admissible covers. Comm. Algebra,
31(8):3547–3618, 2003.

[2] D. Abramovich and B. Hassett. Stable varieties with a twist. In Classification of algebraic varieties,
EMS Ser. Congr. Rep., pages 1–38. Eur. Math. Soc., Zürich, 2011.

[3] D. Abramovich, K. Karu, K. Matsuki, and J. a. Wł odarczyk. Torification and factorization of birational
maps. J. Amer. Math. Soc., 15(3):531–572, 2002.

[4] D. Abramovich and A. Vistoli. Compactifying the space of stable maps. J. Amer. Math. Soc., 15(1):27–
75 (electronic), 2002.

[5] V. Alexeev. Boundedness and K2 for log surfaces. Internat. J. Math., 5(6):779–810, 1994.

[6] V. Alexeev. Moduli spaces Mg,n(W ) for surfaces. In Higher-dimensional complex varieties (Trento,
1994), pages 1–22. de Gruyter, Berlin, 1996.

[7] J. Alper, M. Fedorchuk, D. I. Smyth, and F. van der Wyck. Second flip in the Hassett-Keel program: a
local description. Compos. Math., 153(8):1547–1583, 2017.

[8] C. Birkar, P. Cascini, C. D. Hacon, and J. McKernan. Existence of minimal models for varieties of log
general type. J. Amer. Math. Soc., 23(2):405–468, 2010.

[9] G. Casnati and T. Ekedahl. Covers of algebraic varieties. I. A general structure theorem, covers of
degree 3, 4 and Enriques surfaces. J. Algebraic Geom., 5(3):439–460, 1996.
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